St.Philomena's College (Autonomus), Mysore

PG Department of Mathematics

Question Bank (Revised Curriculum 2018 onwards)

First Year - Second Semester (2018 - 20 Batch)

Course Title (Paper Title): Algebra-II Q.P.Code-57101

Unit	S.No	Question	Marks	
1	1	Show that cancellation law holds good in an integral domain.	$2\mathrm{m}$	
1	2	Show that every finite integral domain is a field.	$2\mathrm{m}$	
1	3	Give an example of a skew field which is not a field	2m	
1	4	If R is a Principal ideal domain, Does Every Prime ideal is maximal	2m	
1	5	Is every subring is an ideal ? Justify	2m	
1	6	If R is a ring with identity and I is an ideal of R that contains a un		
1		then show that $I=R$	2m	
1	7	Show that if the ring R is either real or rational then the only isomorphis		
		from ring R to R is only identity map	2m	
1	8	Define an embedding with an example	2m	
1	9		Define field of quotients of the ring R and hence find the field of quotient	
1		of Gaussian integers	2m	
2	10	As a consequence of Fundamental theorem of Homomorphism show th		
	10	R/R=0 and $R/0=R$	2m	

2

2

2

2

2

2

2

2

2

Is every prime ideal is maximal? Justify

Define the degree of a polynomial. Show that $deg[f(x)g(x)] \leq degf(x) +$

2m

- deg(x), where f(x)g(x) is non zero polynomial. When does the equality 2m
- If R is an integral domain show that R[x] is an integral domain 2mIf R is a commutative ring with unity ,then show that $a_0 + a_1x + a_2x^2 +$ 2m $\dots + a_n x^n$ is a nilpotent in R[x] if a_o, a_1, \dots, a_n are nilpotent elements of R

If R is a commutative ring with identity, then show that $a_0 + a_1 x + a_2 x^2 + a_3 x^2 + a_4 x^2 + a_4$

 $\dots + a_n x^n$ is a unit if a_0 is a unit and $a_1, a_2 \dots a_n$ are nilpotent elements of 152mR

2	16	If I is an maximal ideal of R , does I[x] is maximal ideal of R[x].Justify?	$2\mathrm{m}$
2	17	Show that if a and b are associates if and only if they differ by a unit	$2\mathrm{m}$
2	18	Show that $(2, x)$ is maximal ideal of $Z[x]$	$2\mathrm{m}$
2	19	Is $\mathbb{Z}[x]$ is a principal ideal domain ? justify	$2\mathrm{m}$
2	20	If \mathbb{F} is a field show that $\mathbb{F}[x]$ is an eucliden domain	$2\mathrm{m}$
2	21	Show that $7 + 2i$ and $3 - 4i$ are coprimes in $\mathbb{Z}[i]$	$2\mathrm{m}$

- 22In a PID, prove that every irreduicable element is a prime 2m
 - Justify the statement " An UFD is a PID " 232m
- Define monic and primitive polynomial with an example 242m
- 25Show that $x^n - p$ is irreducible in $\mathbb{Q}[x]$ 2m

2	26	State factor theorem	2m
2	27	Define Characterstic of a field $\mathbb F$	$2\mathrm{m}$
2	28	Define Cyclotomic polynomial. Show that it is irreducible in $\mathbbm{Z}[x]$	$2\mathrm{m}$
3	29	Define field extension with an example	$2\mathrm{m}$
3	30	Define prime subfield of a field $\mathbb F$ and hence find the prime subfield of $\mathbb Q$	$2\mathrm{m}$
3	31	Define Finite and infinite extension with an example	$2\mathrm{m}$
9	20	Define the degree of the field extension and hence find the degree of	0
3	32	$[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]$	2m
3	33	Define algebraic extension with an example	$2\mathrm{m}$
3	34	Define minimal polynomial with an example	$2\mathrm{m}$
4	35	Define splitting field with an example Define normal extension with an	0
4		example	2m
4	37	Define quadratic extension with an example	$2\mathrm{m}$
4	38	Show that every quadratic extension is a algebraic extension	$2\mathrm{m}$
4	39	Define Perfect field	$2\mathrm{m}$
1	40	Define Separable and inseparable extension with an example	$2\mathrm{m}$
4	41	Does there exists a field of order 1000? Justify.	$2\mathrm{m}$
2	42	Show that every euclidean domain is a principal ideal domain	$4\mathrm{m}$
4	43	Prove that $\mathbb{Q}(\sqrt{2},\sqrt{3}) = \mathbb{Q}(\sqrt{2}+\sqrt{3})$	4m

4	44	Prove that the multiplicative group of a non zero elements of a finite field is cyclic .	4m
1	45	If R is a commutative ring with unity , Show that R is a field if and only if the only ideals of R are (0) and R	6m
1	46	If $a^3 = a$, $\forall a \in R$ Show that R is a commutative	$6\mathrm{m}$
3	47	If F is a finite field show that $ F $ is a power of a prime number.	$6\mathrm{m}$
4	48	Explain the construction of field with four elements	$6\mathrm{m}$
1	49	If R is a commutative ring with identity then show that the ideal M is a maximal ideal if and only if R/M is a field.	$7\mathrm{m}$
1	50	If R is a commutative ring with identity then show that the ideal P is a prime ideal if and only if R/P is an integral domain	$7\mathrm{m}$
1	51	State and Prove First isomorphism theorem	$7\mathrm{m}$
1	52	State and Prove Second isomorphism theorem	$7\mathrm{m}$
2	53	If R is accommutative ring with identity show that p is a prime element if and only if (p) is a prime ideal.	7m
2	54	In a Principal ideal domain show that gcd of any two elements always exists	$7\mathrm{m}$
2	55	State and prove Gauss Lemma	$7\mathrm{m}$
2	56	If f is primitive and g is primitive show that their product is also a primitive poynomial.	$7\mathrm{m}$

2	57	Define a nilradical $N(R)$ of a commutative ring R . Show that $N(R)$ is an ideal of R .	$7\mathrm{m}$
3	58	If R is a commutative ring with identity show that 'x' is irreducible if and only if (x) is a maximal ideal of R	$7\mathrm{m}$
3	59	State and prove Eisentien's criterion	$7\mathrm{m}$
3	60	Describe an example of infinite algebraic extension	$7\mathrm{m}$
3	61	State and prove rational root theorem	$7\mathrm{m}$
3	62	Show that $ch\mathbb{F} = 0$ or p ; where p is a prime number	$7\mathrm{m}$
3	63	Prove that prime subfield K is isomorphic to \mathbb{Q} or \mathbb{Z}_p accordingly $ChK = 0$ or $ChK = P$	$7\mathrm{m}$
3	64	Prove that every finite extension is an algebraic extension. How about the converse? Justify.	$7\mathrm{m}$
4	65	If $f(x) \in F[x]$ is a polynomial of degree n then prove that there is an extension K of F which is a splitting field of $f(x)$ such that $[K : F] \leq n!$	$7\mathrm{m}$
4	66	Define normal extension and hence comment on normal extension of the following extensions <i>i</i>) Quadratic extension and <i>ii</i>) $[\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}]$	$7\mathrm{m}$
1	67	Define the operation of ideals and hence show that $I + J, IJ, I \cap J$ are ideals where I and J are ideals of R	8m
1	68	Show that every integral domain can be embedded into a field	$8\mathrm{m}$
3	69	State and prove Kronecke's lemma	$8\mathrm{m}$

4	70	Prove that any ring of order p^2 , where $p \ is \ a \ prime$ is commutative	$8\mathrm{m}$
2	71	Define a prime element and irreducible element . Show that every prime	10m
2		element is irreduicible . How about the converse?Justify.	
	72	Prove that any finite normal extension of F in the splitting field is of	10m
4		some polynomial over F. How about the converse ?Justify.	
	70	Define a Perfect field. Prove that for a field $\mathbb F$ with $Ch\mathbb F=p$ is perfect if	10
4	73	and only if $\mathbb{F} = \mathbb{F}^p$ where $\mathbb{F}^p = \{x^p x \in \mathbb{F}\}.$	10m
		State and prove fundamental theorem of homomorphism by defining all	
1	74	the definitions required to prove the theorem and hence deduce that	14m
		$\frac{\mathbb{Z}[x]}{(2,x)} \cong \mathbb{Z}_2$	
1	75	State and prove Correspondence theorem	14m
2	76	Show that every principal ideal domain is a unique factorisation domain	14m
2	77	Prove that if $R[x]$ is a UFD whenever R is a UFD.	14m
		If $F \subset K \subset L$, where F, K, L are fields, Prove that $[L : F] = [L :$	
3	78	K][K:F].Further show that K/F and L/K are algebraic then L/F is	14m
		algebraic.	

Q.P Code: 16MSMTBH01

St. Philomena's College (Autonomous) Mysore II Semester M.Sc Final Examination April - 2017

Subject: MATHEMATICS

Title: ALGEBRA - II

Time: 3 Hours

b

PART-A

Answer the following questions:

- Find a zero divisor in the direct product ring ZXZ. 1. a.
 - Find all associates of 2 + 3i in Z [i]. b.
 - Factorize 2 and 5 in Z [i] as product of irreducible. c.
 - Give an example of a finite extension which is not a normal extension. d.
 - Give an example of an inseparable polynomial. e.
 - If $F \le K \le L$ are fields such that [K:F] = 3 and [L:K] = 7 then find the value of [L:F]f.
 - Is there a finite field of order 1000? Justify your answer. g.

PART-B

Answer the following:

factorization domain.

Define a maximal ideal. If R is a commutative ring with identity, prove that an ideal M 8 2. a of R is a maximal ideal if and only if R/M is a field. 6 In a commutative ring R shows that the set of all nilpotent elements form an ideal of R. b OR Prove that an integral domain can be embedded in a field. 8 3. a If $\phi: R \to S$ is an onto ring homomorphism with Kernel I, prove that, $S \cong R/I$. 6 b Define principal ideal domain and Euclidean domain. Show that any Euclidean domain 8 4 a is a principal ideal domain. Let R be a PID. Prove that any nonzero non unit in R can be written as a product of 6 b finite member of irreducibles. OR If R is a unique factorization domain, show that R [x] is a unique factorization domain. 8 5 a State and prove Eisenstein's Criterion for irreducibility of a polynomial over a unique 6

PTO

Scanned by CamScanner

Max Marks: 70

7x2 = 10

6	a	If $F \le K \le L$ are fields with [L : K] and [K : F] are finite, show that [L : F] is finite and	8	
		[L:F] = [L:K] [K:F].		
	b	Define finite extension and algebraic extension of fields. Show that a finite extension is	6	Ti
		an algebraic extension.		
		OR		
7	а	Let $p(x)$ be irreducible over F. Show that there exists an extension K/F and $\alpha \in K$ such	8	1.
		that $p(\alpha) = 0$, $K = F(\alpha)$ and $[K:F] = \deg p(x)$.		
	b	Construct a field F of order 4 and give its addition and multiplication tables.	6	
8	а	State and prove primitive element theorem.	10	
	b	Prove that $Q(\sqrt{2},\sqrt{3}) = Q(\sqrt{2}+\sqrt{3}).$	4	
		OR		
9	а	Define splitting field $f(x) \in F[x]$. Show that if deg $f(x) = n$, then there exists a	8	
		splitting field K of $f(x)$ over F such that $[K: F] \le n!$.		
	b	Define perfect field. If Ch F = b then show that F is perfect if and only if every element	6	
		of F has a p^{th} root in F.		
