St.Philomena's College (Autonomus), Mysore PG Department of Mathematics

Question Bank (Revised Curriculum 2018 onwards)
Second Year - Fourth Semester (2018 -20 Batch)
Course Title (Paper Title): Linear Algebra II Q.P.Code-57104

Unit

Define an orthogonal complement. Find the orthogonal compliment of y-axis.

If V be a vector space of polynomials with inner product given by $(f, g)=$
4
$\int_{0}^{1} f(t) g(t) d t$ then find (f, g) if $f(t)=t+2$ and $g(t)=t^{2}-2 t-3$.
If V be a vector space of polynomials with inner product given by $(f, g)=$
5 $\int_{0}^{1} f(t) g(t) d t$ then find $\|f\|$ if $f(t)=t^{3}-3$.

6 In any inner product space show that $\|\alpha u\|=|\alpha|\|u\| \forall \alpha \in F u \in V$
$7 \quad$ Prove that absolute value of cosine of angle is almost one.
8 Define orthogonal set and orthonormal set.

9
Obtain an orthonormal basis with respect to the standard inner product for the subspace of R^{3} is generated by $(1,0,3)$ and $(2,1,1)$.

10
If V is a finite dimensional inner product space and W is a subspace of V then prove that $\left(W^{\perp}\right)^{\perp}=W$

11 Define normal linear operator.
Consider the inner product space R^{4} with the standard inner product. If
$u=(3,2, k,-5)$ and $v=(1, k, 7,3)$ are orthogonal. Find the value of k.
If u and v are vectors in an inner product space V, then prove that
13 $\|u+v\|^{2}+\|u-v\|^{2}=2\left(\|u\|^{2}+\|v\|^{2}\right)$.

14 Define Hermitian adjoint of T and prove that $\left(T^{*}\right)^{*}=T$.
15 Define unitary transformation.
16 If $T \in A(V)$ is unitary then prove that $T T^{*}=I=T^{*} T$.
17 Prove that T is unitary then prove that $\|T v\|=\|v\|$.
18 If T is unitary and λ is a characteristic root of T, then prove that $|\lambda|=1$.
19 Find the symmetric matrix A associated with $q(x, y)=2 x^{2}+x y+y^{2}$
20 Define bilinear form.
21 Define symmetric and skew-symmetric bilinear form.
22 Find the rank and signature of the quadratic form $x_{1}^{2}-4 x_{1} x_{2}+x_{2}^{2}$.
23 Show that $f(u, v)=f_{1}(u) f_{2}(u)$ is a bilinear form. Show that $f(x, y)=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}$ is a bilinear form over $V_{n}(F)$ 24

25 Define a minimal polynomial for T over F.
2 m

26 Define eigen value and eigen vector of T.
2 m

2 m

2 m

2 m

30 Reduce to triangular form, the matrix $A=\left(\begin{array}{ccc}1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 1 & 0\end{array}\right) \quad 3 \mathrm{~m}$
Let $T \in A(V)$ be a Skew - Hermitian transformation then prove that all 31 the eigen values of T are purely imaginary.

If $T \in A(V)$ and if $(T v, T v)=(v, v)$ for all $v \in V$ then prove that T is
32 unitary. space V. Then prove that every eigen values of T are real.

If λ is a characteristic root of the normal transformation N and if $v N=$ λv then prove that $v N^{*}=\bar{\lambda} v$.

If $T \in A(V)$ is such that $(v T, v)=0$ for all $v \in V$, then prove that $T=0$. Let f be the bilinear form on $U=\mathbb{R}^{2}$ and $V=\mathbb{R}^{3}$ that is defined by $f\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}, y_{3}\right)\right)=2 x_{1} y_{2}-x_{1} y_{3}+2 x_{2} y_{1}+x_{2} y_{2}+x_{2} y_{3}$. i). Write the matrix A of f relative to $\mathcal{A}=\{(1,0),(0,1)\}$ and $\mathcal{B}=4 \mathrm{~m}$ $\{(1,0,0),(0,1,0),(0,0,1)\}$. ii). Use the matrix A to compute the value of $f((3,-1),(0,4,-1))$.

If $T, S \in A(V)$ and if S is regular, then T and $S T S^{-1}$ have the same minimal polynomial.

If $v_{1}, v_{2}, \ldots, v_{n}$ is an orthonormal basis of V and if the matrix of $T \in A(V)$ in this basis is $\left(\alpha_{i j}\right)$, then prove that the matrix of T^{*} in this basis is $\left(\beta_{i j}\right)$, where $\left(\beta_{i j}\right)=\overline{\left(\alpha_{i j}\right)}$.

Prove that the normal linear transformation N is Hermitian if and only if its characteristic roots are real.

Prove that the linear transformation T on V is unitary if and only if it

Let T be a self adjoint operator on a finite dimensional inner product takes an orthonarmal basis of V into an orthonormal basis of V.

Let $T \in A(V)$ be a unitary transformation and let λ be an eigen value 41 of T then show that $|\lambda|=1$.

42 Show that any orthonormal set is linearly independent. 6 m Let V be the set of all continuous real valued function defined on the 43 closed interval $[0,1]$ Show that V is a real inner product space with the inner product defined by $(f, g)=\int_{0}^{1} f(t) g(t) d t$.

Suppose S and T are linear operator on an inner product space V and c
44 is a scalar. If S and T possess adjoint operator. Prove that $S+T, c T$, $S T$ possess adjoint.

45 Find the rank and signature of the quadratic form $x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}$.
6 m Let f be the bilinear form on $U=\mathbb{R}^{3}$ and $V=\mathbb{R}^{2}$ that is defined by $f\left(\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}\right)\right)=-7 x_{1} y_{1}-10 x_{1} y_{2}-2 x_{2} y_{1}-3 x_{2} y_{2}+12 x_{3} y_{1}+17 x_{3} y_{2} ;$

46 i). Write the matrix A of f relative to $\mathcal{A}=\{(1,0,0),(1,1,0),(1,1,1)\}$ 6 m and $\mathcal{B}=\{(1,-1),(2,-1)\}$. ii). Use the matrix A to compute the value of $f((2,3,1),(0,-1))$.

47 Prove that congruence is an equivalence relation.
6 m

Define the Jordan canonical form with suitable example which contains at least two Jordan blocks. Find the Jordan canonical form for the matrix:

48

If $u, v \in V$ and $\alpha, \beta \in F$ then show that $(\alpha u+\beta v, \alpha u+\beta v)=\alpha \bar{\alpha}(u, u)+$ $\alpha \bar{\beta}(u, v)+\beta \bar{\alpha}(v, u)+\beta \bar{\beta}(v, v)$
Let V be the set of real valued function $y=f(x)$ satisfying $\frac{d^{2} y}{d x^{2}}+4 y=0$.
53 Prove that V is a two dimensional real vector space. Define $(u, v)=$ $\int_{0}^{\Pi} u v d x$, Find an orthonormal basis in V.
Show that $V_{n}(\mathbb{C})$ is a complex inner product space with the inner product
54 defined by $(u, v)=x_{1} \overline{y_{1}}+x_{2} \overline{y_{2}}+\cdots+x_{n} \overline{y_{n}}$ where $u=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ 7 m and $v=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.

If T in $A_{F}(V)$ has a minimal polynomial $p(x)=q(x)^{e}$, where $q(x)$, is a monic, irreducible polynomial in $F[x]$ then basis of V
 55

$$
56
$$ If V is finite dimensional over F, then prove that $T \in A(V)$ is invertible if and only if the constant term of the minimal polynomial for T is not 7 m zero.

If V is n-dimensional vector space over F and if $T \in A(V)$ has all its
57 characteristic roots in F then prove that T satisfies a polynomial of degree n over F.

58 State and prove the Gram - Schmidt orthogonalization process.
59 State and prove Cauchy - Schwartz Inequality.
60 State and prove Spectral theorem.
Show that a bilinear form f on V is symmetric if and only if every matrix 61 that represents f is symmetric.

Suppose that $V=V_{1} \oplus V_{2}$, where V_{1} and V_{2} are subspace of V invariant under T. Let T_{1} and T_{2} be the linear transformation induced by T on V_{1}

66 State and prove Sylvester's law of inertia. multiple of $P_{1}(x)$ and $P_{2}(x)$. that the minimal polynomial of T_{i} is $q_{i}(x)_{1 i}$ v_{2} then v_{1} and v_{2} are orthogonal. $u \in U, v \in V$.

66 prove that the minimal polynomial for T over F is the least common

For each $i=1,2, \ldots, k u_{i} \neq(0)$ and $V=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{k}$, then prove

Let V be an inner product space and let N be a normal transformation on V. Then prove that the following statements are true: i). $\|N(v)\|=$ $\left\|N^{*}(v)\right\| \forall v \in V$ ii). $(N-c I)$ is normal, for every $c \in F$ iii). If λ_{1} and λ_{2} are distinct eigenvector of N with corresponding eigen values v_{1} and

Let $X=\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right]^{T}$ denote the coordinate matrix of a vector $u \in U$ relative to the basis \mathcal{A} of U and let $Y=\left[\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right]^{T}$ be the coordinate matrix of a vector $v \in V$ relative to the basis \mathcal{B} of V. If $A=\left[a_{i j}\right]_{m \times n}$ then show that A is the matrix of the bilinear form f relative to \mathcal{A} and \mathcal{B} if and only if the equation $f(u, v)=X^{T} A Y$ is satisfied for all choice
Q.P Code: 16MSMTAS05

St. Philomena's College (Autonomous) Mysore
 I Semester M.Sc. Makeup Examination September 2018
 Subject: MATHEMATICS
 Title: Linear Algebra (SC)

Max Marks: 70
Time: 3 Hours
PART -A

Answer the following:

1. If $V=R[x]$, the set of all polynomials over R and $W=\{f(x) \in V \mid f(x)=f(1-x)\}$
a. then prove that W is a subspace of V.
b. Prove that W is a subspace of V if and only if $L(W)=W$.
c. If V is an inner product pace then prove that $|(u, v)| \leq\|u\| \cdot\|v\| \forall u, v \in V$.
d. Solve by Crammer's rule $x_{1}+2 x_{2}+3 x_{3}=-5 ; 2 x_{1}+x_{2}+x_{3}=-7 ; x_{1}+x_{2}+x_{3}=0$.
e. If T is Hermitian then prove that all of its characteristic roots are real numbers.
f. If T is a linear transformation and $v T, v T)=(v, v) \forall v \in V$, then prove that T is unitary. If A is a symmetric matrix then prove that any two eigen vectors form different eigen g. spaces are orthogonal.
PART - B

Answer the following:

2. a.i. State and prove fundamental theorem of homomorphism for vector spaces.
ii. Show that the vectors $v_{1}=(1,1,2,4), v_{2}=(2,-1,-5,2), v_{3}=(1,-1,-4,0)$ and $v_{4}=(2,1,1,6)$ are linearly dependent in $R^{4}(R)$.
iii. If W is a subspace of finite dimensional vector space V over F then prove that there exists a subspace W^{1} of V such that $V=W \oplus W^{1}$.
b.i. Let W be a subspace of a finite dimensional vector space V over F. Then prove that $\operatorname{dim}\left(\frac{V}{W}\right)=\operatorname{dim} V-\operatorname{dim} W$.
ii. If S is a finite subset of a vector space V such that $V=L[S]$ then prove that there exists a subset of S which is a basis of V.
iii. $(1,1,1)$ is linearly independent in $R^{3}(R)$. Extend it to form a basis of R^{3}.
3. a.i. If two rows of a matrix A are equal then prove that determinant of A is 0 .
ii. If T is a linear transformation on an n-dimensional vector space V , then prove that characteristic and minimal polynomial for T have the same roots.
iii.

Obtain the eigen values, eigen vectors and eigen spaces of $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$.

OR

b.i. If $\left\{w_{1}, w_{2}, \ldots \ldots ., w_{m}\right\}$ is an orthonormal set in V , then prove that

$$
\sum_{i=1}^{m}|(w i, v)|^{2} \leq\|v\|^{2} \text { for all } v \in V .
$$

ii. Obtain an orthonormal basis with respect to the standard inner product for the subspace of R^{3} generated by $(1,0,3)$ and $(2,1,1)$.
iii. Let S be an orthogonal set of non-zero vectors in an inner product space V. Then prove that S is a linearly independent set.
4. a.i. If V and W are vectors spaces over F of dimension m and n respectively then prove that dimension of $H o m(V, W$ is $m n$.
ii. Let A be a Hermitian matrix, then prove that there exists a unitary matrix P such that $A^{1}=P^{*} A P$ is a diagonal matrix.

OR
b.i. If V is an n dimensional vector space over F and if $T \in A(V)$ has all its roots in F then prove that T satisfies a polynomial of degree n over F.
ii. State and prove Sylvester law of Inertia.
5. a.i If $W C V$ is invariant under T, then prove that T induces a linear transformation \widetilde{T} on $\frac{V}{W}$ defined by $(v+W) \widetilde{T}=v T+W$. if T satisfies the polynomial $q(x) \in F(x)$ then so does \widetilde{T}. Further if $P_{1}(x)$ is the minimal polynomial for \widetilde{T} over F and if
ii. Prove that the relation similarity is an equivalence relation.
iii.

Find the Jordan form of the matrix $\left(\begin{array}{rrr}1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 0 & 0\end{array}\right)$.

OR

b.i. If $T \in A(V)$ has all its characteristic roots in F, then prove that there is a basis in which the matrix of T is triangular.
ii. Suppose that $V=V_{1} \oplus V_{2}$, where V_{1} and V_{2} subspaces of V invariant under T. Let T_{1} and T_{2} be the linear transformation induced by T on V_{1} and V_{2} respectively. If the minimal polynomial T_{1} over F is $P_{1}(x)$ and that of T_{2} is $P_{2}(x)$, then prove that

