St.Philomena's College (Autonomus), Mysore

PG Department of Mathematics

Question Bank (Revised Curriculum 2018 onwards)

Second Year - Fourth Semester (2018 - 20 Batch)

Course Title (Paper Title): Linear Algebra II Q.P.Code-57104

Unit	S.No	Question	Marks
1	1	Define inner product space.	$2\mathrm{m}$
1	2	Define norm and find the norm of $(4,5,6)$.	$2\mathrm{m}$
1	3	Define an orthogonal complement. Find the orthogonal compliment	t of 2m
		y-axis.	
1	4	If V be a vector space of polynomials with inner product given by (f, g)) = 2m
		$\int_0^1 f(t)g(t)dt \text{ then find } (f,g) \text{ if } f(t) = t+2 \text{ and } g(t) = t^2 - 2t - 3.$	
1	5	If V be a vector space of polynomials with inner product given by (f, g)) = 2m
		$\int_{0}^{1} f(t)g(t)dt \text{ then find } f \text{ if } f(t) = t^{3} - 3.$	2111
1	6	In any inner product space show that $\ \alpha u\ = \alpha \ u\ \ \forall \alpha \in F \ u \in V$	$2\mathrm{m}$
1	7	Prove that absolute value of cosine of angle is almost one.	$2\mathrm{m}$
1	8	Define orthogonal set and orthonormal set.	$2\mathrm{m}$
1	9	Obtain an orthonormal basis with respect to the standard inner prod	uct 2m
		for the subspace of \mathbb{R}^3 is generated by $(1,0,3)$ and $(2,1,1)$.	2111

1	10	If V is a finite dimensional inner product space and W is a subspace of V then prove that $(W^{\perp})^{\perp} = W$	2m
2	11	Define normal linear operator.	2m
2	12	Consider the inner product space R^4 with the standard inner product. If $u = (3, 2, k, -5)$ and $v = (1, k, 7, 3)$ are orthogonal. Find the value of k.	2m
2	13	If u and v are vectors in an inner product space V , then prove that $\ u+v\ ^2 + \ u-v\ ^2 = 2\left(\ u\ ^2 + \ v\ ^2\right).$	2m
2	14	Define Hermitian adjoint of T and prove that $(T^*)^* = T$.	$2\mathrm{m}$
2	15	Define unitary transformation.	$2\mathrm{m}$
2	16	If $T \in A(V)$ is unitary then prove that $TT^* = I = T^*T$.	$2\mathrm{m}$
2	17	Prove that T is unitary then prove that $ Tv = v $.	$2\mathrm{m}$
2	18	If T is unitary and λ is a characteristic root of T, then prove that $ \lambda = 1$.	$2\mathrm{m}$
3	19	Find the symmetric matrix A associated with $q(x, y) = 2x^2 + xy + y^2$	$2\mathrm{m}$
3	20	Define bilinear form.	$2\mathrm{m}$
3	21	Define symmetric and skew-symmetric bilinear form.	$2\mathrm{m}$
3	22	Find the rank and signature of the quadratic form $x_1^2 - 4x_1x_2 + x_2^2$.	2m
3	23	Show that $f(u, v) = f_1(u)f_2(u)$ is a bilinear form.	$2\mathrm{m}$
3	24	Show that $f(x, y) = x_1y_1 + x_2y_2 + \dots + x_ny_n$ is a bilinear form over $V_n(F)$ where $x = (x_1, x_2, \dots, x_n)$ and $y = (y_1, y_2, \dots, y_n)$.	2m

4	25	Define a minimal polynomial for T over F .	2m
4	26	Define eigen value and eigen vector of T .	$2\mathrm{m}$
4	27	Determine the rank and signature of the matrix $A = \begin{pmatrix} 4 & 5 & -2 \\ 5 & 1 & -2 \\ -2 & -2 & 3 \end{pmatrix}$.	2m
4	28	Determine the rank and signature of the matrix $A = \begin{pmatrix} 4 & 5 & -2 \\ 5 & 1 & -2 \\ -2 & -2 & 3 \end{pmatrix}$. Find the minimal polynomial of the matrix $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & -9 \\ 0 & 1 & 6 \end{pmatrix}$.	2m
4	29	Reduce to Jordan form the matrix	2m
4	30	Reduce to triangular form, the matrix $A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 1 & 0 \end{pmatrix}$	3m
2	31	Let $T \in A(V)$ be a Skew - Hermitian transformation then prove that all	4m
		the eigen values of T are purely imaginary.	
2	32	If $T \in A(V)$ and if $(Tv, Tv) = (v, v)$ for all $v \in V$ then prove that T is	4m
		unitary.	

2	33	Let T be a self adjoint operator on a finite dimensional inner product space V . Then prove that every eigen values of T are real.	4m
		space V. Then prove that every eigen values of T are real.	
2	34	If λ is a characteristic root of the normal transformation N and if $vN =$	4m
		λv then prove that $vN^* = \overline{\lambda}v$.	
2	35	If $T \in A(V)$ is such that $(vT, v) = 0$ for all $v \in V$, then prove that $T = 0$.	4m
		Let f be the bilinear form on $U = \mathbb{R}^2$ and $V = \mathbb{R}^3$ that is de-	
		fined by $f((x_1, x_2), (y_1, y_2, y_3)) = 2x_1y_2 - x_1y_3 + 2x_2y_1 + x_2y_2 + x_2y_3.$	
3	36	i). Write the matrix A of f relative to $\mathcal{A} = \{(1,0), (0,1)\}$ and $\mathcal{B} =$	4m
		$\{(1,0,0), (0,1,0), (0,0,1)\}$. ii). Use the matrix A to compute the value	
		of $f((3, -1), (0, 4, -1))$.	
4	37	If $T, S \in A(V)$ and if S is regular, then T and STS^{-1} have the same	4m
4		minimal polynomial.	1111
		If v_1, v_2, \ldots, v_n is an orthonormal basis of V and if the matrix of $T \in A(V)$	
2	38	in this basis is (α_{ij}) , then prove that the matrix of T^* in this basis is (β_{ij}) ,	$5\mathrm{m}$
		where $(\beta_{ij}) = \overline{(\alpha_{ij})}$.	
2	39	Prove that the normal linear transformation N is Hermitian if and only	$5\mathrm{m}$
-		if its characteristic roots are real.	
2	40	Prove that the linear transformation T on V is unitary if and only if it	$5\mathrm{m}$
		takes an orthonarmal basis of V into an orthonormal basis of V .	0111

2	41	Let $T \in A(V)$ be a unitary transformation and let λ be an eigen value	$5\mathrm{m}$
-	11	of T then show that $ \lambda = 1$.	0111
1	42	Show that any orthonormal set is linearly independent.	$6\mathrm{m}$
		Let V be the set of all continuous real valued function defined on the	
1	43	closed interval $[0,1]$ Show that V is a real inner product space with the	$6\mathrm{m}$
		inner product defined by $(f,g) = \int_0^1 f(t)g(t)dt$.	
		Suppose S and T are linear operator on an inner product space V and c	
2	44	is a scalar. If S and T possess adjoint operator. Prove that $S + T$, cT ,	$6\mathrm{m}$
		ST possess adjoint.	
3	45	Find the rank and signature of the quadratic form $x_1^2 + 2x_1x_2 + x_2^2$.	$6\mathrm{m}$
		Let f be the bilinear form on $U = \mathbb{R}^3$ and $V = \mathbb{R}^2$ that is defined by	
		$f((x_1, x_2, x_3), (y_1, y_2)) = -7x_1y_1 - 10x_1y_2 - 2x_2y_1 - 3x_2y_2 + 12x_3y_1 + 17x_3y_2;$	
3	46	i). Write the matrix A of f relative to $A = \{(1,0,0), (1,1,0), (1,1,1)\}$	$6\mathrm{m}$
		and $\mathcal{B} = \{(1, -1), (2, -1)\}$. ii). Use the matrix A to compute the value	
		of $f((2,3,1), (0,-1))$.	
4	47	Prove that congruence is an equivalence relation.	$6\mathrm{m}$

Define the Jordan canonical form with suitable example which contains at

least two Jordan blocks. Find the Jordan canonical form for the matrix:

6m

$$\begin{array}{cccc}
48 \\
A = \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & -2 \\
0 & 1 & 3
\end{array}$$

49 Let V be a finite dimensional inner product space. Let W be a subspace 49 of V. Prove that V is direct sum of W and W^{\perp} that is $V = W \oplus W^{\perp}$. Let V be the set of real valued function y = f(x) satisfying $\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} +$ 50 $11\frac{dy}{dx} - 6y = 0$. i). Prove that V is a three dimensional real vector space. 7m ii). In V define $(u, v) = \int_{-\infty}^{0} uv dx$, find an orthonormal basis for V. 51 State and prove the Bessal's inequality. 7m 52 If $u, v \in V$ and $\alpha, \beta \in F$ then show that $(\alpha u + \beta v, \alpha u + \beta v) = \alpha \overline{\alpha}(u, u) +$ 53 7m

$$\alpha\overline{\beta}(u,v) + \beta\overline{\alpha}(v,u) + \beta\overline{\beta}(v,v)$$

4

1

1

1

1

1

1

Let V be the set of real valued function y = f(x) satisfying $\frac{d^2y}{dx^2} + 4y = 0$.

53 Prove that V is a two dimensional real vector space. Define (u, v) = 7m $\int_0^{\Pi} uv dx$, Find an orthonormal basis in V.

Show that $V_n(\mathbb{C})$ is a complex inner product space with the inner product

54 defined by $(u, v) = x_1\overline{y_1} + x_2\overline{y_2} + \dots + x_n\overline{y_n}$ where $u = (x_1, x_2, \dots, x_n)$ 7m and $v = (y_1, y_2, \dots, y_n)$.

If T in $A_F(V)$ has a minimal polynomial $p(x) = q(x)^e$, where q(x), is a monic, irreducible polynomial in F[x] then basis of V over F can be found in which the matrix of T is of the form 55 $\begin{pmatrix} c(q(x)^{e_1}) & & \\ & c(q(x)^{e_2}) & \\ & & \ddots & \\ & & & c(q(x)^{e_r}) \end{pmatrix}$ where $e = e_1 \ge e_2 \ge \cdots \ge e_r$. 55 $7\mathrm{m}$ If V is finite dimensional over F, then prove that $T \in A(V)$ is invertible 56 $7\mathrm{m}$ if and only if the constant term of the minimal polynomial for T is not zero. If V is n-dimensional vector space over F and if $T \in A(V)$ has all its 57 $7\mathrm{m}$ characteristic roots in F then prove that T satisfies a polynomial of degree n over F. 8m58State and prove the Gram - Schmidt orthogonalization process. 59 $8 \mathrm{m}$ State and prove Cauchy - Schwartz Inequality. 60 $8\mathrm{m}$ State and prove Spectral theorem. Show that a bilinear form f on V is symmetric if and only if every matrix 61 $8 \mathrm{m}$

that represents f is symmetric.

4

4

4

1

1

3

Suppose that $V = V_1 \oplus V_2$, where V_1 and V_2 are subspace of V invariant under T. Let T_1 and T_2 be the linear transformation induced by T on V_1

62 and V_2 with the minimal polynomial $P_1(x)$ and $P_2(x)$ respectively. Then 8m prove that the minimal polynomial for T over F is the least common multiple of $P_1(x)$ and $P_2(x)$.

For each i = 1, 2, ..., k $u_i \neq (0)$ and $V = V_1 \oplus V_2 \oplus \cdots \oplus V_k$, then prove 83 that the minimal polynomial of T_i is $q_i(x)_{1i}$

Let V be an inner product space and let N be a normal transformation on V. Then prove that the following statements are true: i). ||N(v)|| =

64 $||N^*(v)|| \forall v \in V \text{ ii}$). (N - cI) is normal, for every $c \in F$ iii). If λ_1 and 10m λ_2 are distinct eigenvector of N with corresponding eigen values v_1 and v_2 then v_1 and v_2 are orthogonal.

Let $X = [\alpha_1, \alpha_2, \dots, \alpha_m]^T$ denote the coordinate matrix of a vector $u \in U$ relative to the basis \mathcal{A} of U and let $Y = [\beta_1, \beta_2, \dots, \beta_n]^T$ be the coordinate matrix of a vector $v \in V$ relative to the basis \mathcal{B} of V. If $A = [a_{ij}]_{m \times n}$ then show that A is the matrix of the bilinear form f relative to \mathcal{A} and \mathcal{B} if and only if the equation $f(u, v) = X^T A Y$ is satisfied for all choice $u \in U, v \in V$.

⁶⁶ State and prove Sylvester's law of inertia.

14m

4

4

2

3

65

Q.P Code: 16MSMTAS05

St. Philomena's College (Autonomous) Mysore I Semester M.Sc. Makeup Examination September 2018 Subject: MATHEMATICS Title: Linear Algebra (SC) Max Marks: 70

Time: 3 Hours

PART –A

Answer the following:

If V = R[x], the set of all polynomials over R and $W = \{f(x) \in V | f(x) = f(1-x)\}$

-a.

1.

then prove that W is a subspace of V.

b. Prove that W is a subspace of V if and only if L(W) = W.

c. If V is an inner product pace then prove that $|(u, v)| \leq ||u|| \cdot ||v|| \forall u, v \in V$.

d. Solve by Crammer's rule $x_1 + 2x_2 + 3x_3 = -5$; $2x_1 + x_2 + x_3 = -7$; $x_1 + x_2 + x_3 = 0$.

e. If T is Hermitian then prove that all of its characteristic roots are real numbers.

f. If T is a linear transformation and $vT, vT = (v, v) \forall v \in V$, then prove that T is unitary.

If A is a symmetric matrix then prove that any two eigen vectors form different eigen spaces are orthogonal.

PART – B

Answer the following:

2. a.i. State and prove fundamental theorem of homomorphism for vector spaces.

ii. Show that the vectors $v_1 = (1, 1, 2, 4), v_2 = (2, -1, -5, 2), v_3 = (1, -1, -4, 0)$ and

 $\nu_4 = (2, 1, 1, 6)$ are linearly dependent in $R^4(R)$.

iii. If W is a subspace of finite dimensional vector space V over F then prove that there 5+5+4exists a subspace W^1 of V such that $V = W \oplus W^1$.

OR

PTO

Scanned by CamScanner

7×2=14

b.i. Let W be a subspace of a finite dimensional vector space V over F. Then prove that

$$\dim\left(\frac{V}{W}\right) = \dim V - \dim W$$

- ii. If S is a finite subset of a vector space V such that V = L[S] then prove that there exists a subset of S which is a basis of V.
- iii. (1, 1, 1) is linearly independent in $R^3(R)$. Extend it to form a basis of R^3 .
- 3. a.i. If two rows of a matrix A are equal then prove that determinant of A is 0.
 - ii. If T is a linear transformation on an n-dimensional vector space V, then prove that characteristic and minimal polynomial for T have the same roots.
 - iii. Obtain the eigen values, eigen vectors and eigen spaces of $A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

OR

b.i. If $\{w_1, w_2, \dots, w_m\}$ is an orthonormal set in V, then prove that

 $\sum_{i=1}^{m} \left| (wi, \nu) \right|^2 \le \left\| \nu \right\|^2 \text{ for all } \nu \in V.$

- ii. Obtain an orthonormal basis with respect to the standard inner product for the subspace of R^3 generated by (1, 0, 3) and (2, 1, 1).
- iii. Let S be an orthogonal set of non-zero vectors in an inner product space V. Then prove that S is a linearly independent set.
- 4. a.i. If V and W are vectors spaces over F of dimension m and n respectively then prove that dimension of Hom(V, W) is mn.
 - ii. Let A be a Hermitian matrix, then prove that there exists a unitary matrix P such that

 $A^1 = P^*AP$ is a diagonal matrix.

OR

8+6

7+4+3

6+5+3

5+5+4

Scanned by CamScanner

b.i. If V is an n dimensional vector space over F and if $T \in A(V)$ has all its roots in F then prove that T satisfies a polynomial of degree n over F.

ii. State and prove Sylvester law of Inertia.

5.

-

a.i If WCV is invariant under T, then prove that T induces a linear transformation

 \widetilde{T} on $\frac{V}{W}$ defined by (v + W) $\widetilde{T} = vT + W$. if T satisfies the polynomial $q(x) \in F(x)$

then so does \widetilde{T} . Further if $P_1(x)$ is the minimal polynomial for \widetilde{T} over F and if

ii. Prove that the relation similarity is an equivalence relation.

iii. Find the Jordan form of the matrix $\begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 0 & 0 \end{pmatrix}$.

OR

b.i. If $T \in A(V)$ has all its characteristic roots in *F*, then prove that there is a basis in which the matrix of *T* is triangular.

ii. Suppose that $V = V_1 \oplus V_2$, where V_1 and V_2 subspaces of V invariant under T. Let

 T_1 and T_2 be the linear transformation induced by T on V_1 and V_2 respectively. If the

minimal polynomial T_1 over F is $P_1(x)$ and that of T_2 is $P_2(x)$, then prove that

7+3+4

7+7