St.Philomena's College (Autonomus), Mysore PG Department of Mathematics

Question Bank (Revised Curriculum 2018 onwards)

Second Year - Fourth Semester (2018 -20 Batch)

Course Title (Paper Title): Advanced Graph Theory Q.P.Code-57305
Unit S.No Question Marks1 Define line graph and write the line graph of $K_{4}-e$.
1 Define line graph and write the line graph of $K_{4}-e$.
2 Define subdivision graph with example. 2 m
3 Define total graph with example. 2 m
Draw $L(G)$ for the following degree seguences; $i) \cdot(2,2,2,2,2,2)$4ii). $(3,2,2,1,1,1)$5 Draw $L(G), L^{2}(G)$ for K_{4} and W_{3}.2 m
$6 \quad$ Is W_{5} is a line graph? Justify. 2 m
$7 \quad$ Is $K_{4}-e$ is a line graph? Justify. 2 m
8 Draw $L(G)$ and $L^{2}(G)$ of the degree sequence $(3,2,2,2,1)$. 2 m
9 Find adjacency eigen value of K_{3} graph. 2 m
10 Define adjacency matrix with example. 2 m
11 Define incidence matrix with example. 2 m
12 Define cycle matrix with example. 2 m

13
Mention at least two differences between adjacency matrix and incidence matrix.

14 Define distance between two vertices of a graph G with example.
2 m

15 Define eccentricity of a vertex of a graph G with example.
2 m
16 Define radius of a graph G with example.
2 m

17 Define diameter of a graph G with example.
2 m
18 Define center of a graph G with example.
2 m

19 Define distance matrix of a graph G with example. 2 m Give an example of dominating set D such that D is common dominating 20 set for C_{5} and $\overline{C_{5}}$.

Give an example of dominating set D such that D is common dominating
21 set for K_{5} and $\overline{K_{5}}$.

22 Give an example for a minimal dominating set need not be minimum.
23 Define minimal dominating set with example.
24 Define domination number of a graph G with example.
25 Find domination number of K_{p} and $\overline{K_{p}}$. 2 m

26 Find domination number of $K_{m, n}$ and $\overline{K_{m, n}}$. 2 m

27 Find domination number of C_{n} and P_{n}. 2 m

If G is a (p, q) graph then show that $L(G)$ is a $\left(q, q_{L}\right)$ graph where, $q_{L}=\frac{1}{2} \sum_{i=1}^{p} d_{i}^{2}-q$.

Write all the forbidden subgraphs for line graphs.

A graph G on p points is connected if and only if $(A+I)^{p-1}$ has no zero entries.

Define adjacency eigen value of a graph. Find the adjacency eigen value of C_{4} and W_{4} graphs.

Let T be a tree with $V(T)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} n \geq 2$ and L be Laplacian of T. then show that $\mu=1$ is an eigen value of L with multiplicity atleast $p(T)-q(T)$.

Find the minimal dominating set of $C_{n}, \overline{K_{m, n}}, K_{n}, K_{m, n}, W_{n}$, and P_{n} graphs.

If G is a graph having p points and q lines then prove that $p-q \leq \gamma(G) \leq$ 6 m $p-\Delta$.

Prove that every non trivial connected graph G has a dominating set D whose component $V-D$ is also a dominating set.

If G be any graph then show that $p-q \leq \gamma(G)$, further $\gamma(G)=p-q$ if and only if each component of G is a star.

Let T be a tree with $V(T)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}, n \geq 2$ and D be the distance
matrix of T, then show that D has one positive and $n-1$ negative eigen

7 m values.

Let T be a tree with $V(T)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}, D$ be the distance matrix of T and L be Laplacian of T. Let $\mu_{1}>0>\mu_{2}>\cdots>\mu_{n}$ be the eigen values of D and Let $\lambda_{1} \geq \cdots \geq \lambda_{n-1}>\lambda_{n}=0$ be eigen values of L, then show that $0>\frac{-2}{\lambda_{1}} \geq \mu_{2} \geq \frac{-2}{\lambda_{2}} \geq \cdots \geq \frac{-2}{\lambda_{n-1}} \geq \mu_{n}$.
Let T be a tree with $V(T)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}, n \geq 2$ and D be the distance matrix of T, then show that the determinant of D is given by 7 m $\operatorname{det} D=(-1)^{n-1}(n-1)^{n-2}$.

Let T be a tree with $V(T)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, and L be Laplacian of T. Suppose $\mu>1$ is an integer eigen value of L with u as a corresponding eigen vector, then show that the followings are hold i). μ divides n ii). No coordinate of u is zero iii). The algebraic multiplicity of μ is one. Show that the following statements are equivalent i). G is a line graph. ii). The line of G can be partitioned into complete subgraphs in such a way that no points lies in more than two of the subgraphs.

A graph is the line graph of a tree if and only if it is a connected block graph in which each cut point is on exactly two blocks.

5 The line graph of a graph G is path if and only if G is path.
\qquad

2 8 m - vertex of D. ii)there exist a vertex u in $V-D$ such that $N(x) \cap D=\{v\}$.
55 If G is a graph of order n then prove that $\left\lfloor\frac{n}{1+\Delta(G)}\right\rfloor \leq \gamma(G) \leq n-\beta$.

Define point covering number of a graph, then prove that for any (p, q) graph without isolated point $\gamma(G) \leq \alpha(G)$. where $\alpha(G)$ is point covering number of G.

Define minimal dominating set. If G be a graph without isolated points 57 set.

Let G be a connected graph with $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}, D$ be the distance matrix of G, and $G_{1}, G_{2}, \ldots, G_{k}$ be the blocks of G, then prove 58 that the following are hold: i). $\operatorname{cof} D(G)=\prod_{i=1}^{k} \operatorname{cof} D\left(G_{i}\right)$ ii). $\operatorname{det} D(G)=14 \mathrm{~m}$ $\sum_{i=1}^{k} \operatorname{det} D\left(G_{i}\right) \prod_{j \neq i} \operatorname{cof} D\left(G_{i}\right)$.

Q.P Code: 16MSMTDS05

St. Philomena's College (Autonomous) Mysore
 IV Semester M.Sc. Makeup Examination September 2018
 Subject: MATHEMATICS
 Title: Advanced Graph Theory (SC)

Time: 3 Hours
Max. Marks: 70

Instruction to the Candidates: Answer All the Questions:

PART - A

1. a. Prove that there are no. 3 -connected graph with 7 edges.
b. Define a line graph with an example.
c. Show that every planar graph contains a vertex of degree at most 5 .
d. Give two example of graphs which are both Eulerian and Hamiltonian.
e. Define a cycle matrix with an example.
f. Define an arboricity with an example.
g. Mention at least two differences between adjacency matrix and incidence matrix.

PART - B

a. Show that:
2. The following statements are equivalent for a connected graph G :
i) G is Eulerian
ii) Every point of G has even degree
iii) The set of lines of G can be partitioned into cycles.
b. If $p \geq 3$ and for every pair u and v of non adjacent point ray $\operatorname{deg}(x)+\operatorname{deg}(v) \geq p$, then prove that G is Hamiltonian.

> OR
3. a. If G_{1} and G_{2} are isomorphic then prove that $L\left(G_{1}\right)$ and $L\left(G_{2}\right)$ are also isomorphic. 06
b. If G is a (p, q) graph where point have deg i, then prove that LCG has q points and $q_{2}=q+\frac{1}{2} \sum d_{1}^{2}$ lines
c. Write all the forbidden sub graphs for line graphs.
4. a. Let G_{1} and G_{2} be connected graph with isomorphic line graphs, then G_{1} and G_{2} are a. isomorphic unless one is K_{3} and other.
b. Prove that the complete graph $K_{2 n+1}$ is $2-$ factorable.

OR

5. a. Prove that G is a line graph if and only if the lines of G can be portioned into complete
sub group in such a way that no point lies in more than two of the sub graphs.
b. Prove that every planer graph is 5 -colourable.
6. a. For any graph G, show that $x(G) \leq 1+\max \delta\left(G^{\prime}\right)$, where the maximum is taken over all 06 induced sub graph G^{1} of G.
b. For any graph G, show that the sum and product of x and \bar{x} satisfies the inequality
$2 \sqrt{p} \leq x+\bar{x} \leq p+1$
$p \leq x \bar{x} \leq\left(\frac{p+1}{2}\right)^{2}$
OR
7. a. Prove that a graph is bicolorable if and only if it has not odd cycle. . 08
b. Show that every Peterson graph is non-hamiltonian.
$\begin{array}{ll}\text { 8. a. State and prove matrix tree theorem. } & \mathbf{1 0}\end{array}$
b. If G is a graph of ordin, then prove that $\left[\frac{n}{1+\Delta G}\right] \leq \gamma(G) \leq n-\Delta(G)$

OR

9. a. Prove that G with point ' p ' is tree if and only if $f(G, t)=t(t-1)^{p-1}$.
b. Show that the point graph and the line graph of a graph G are isomorphic if and only if G has at most one isolated point and K_{2} is nt a component of G.
