St.Philomena’s College (Autonomus), Mysore
PG Department of Mathematics
Question Bank (Revised Curriculum 2018 onwards)
Second Year - Fourth Semester ( 2018 -20 Batch)

Course Title (Paper Title): Advanced Graph Theory Q.P.Code-57305

Unit S.No Question Marks
1 1 Define line graph and write the line graph of K, — e. 2m
1 2 Define subdivision graph with example. 2m
1 3 Define total graph with example. 2m

Draw L(G) for the following degree seguences; 1).(2,2,2,2,2,2)

i).(3,2,2,1,1,1)

1 5  Draw L(G), L*(G) for K, and Wj. 2m
1 6 Is W; is a line graph? Justify. 2m
1 7 Is K4 — e is a line graph? Justify. 2m
1 8  Draw L(G) and L*(G) of the degree sequence (3,2,2,21). 2m
1 9 Find adjacency eigen value of K3 graph. 2m
2 10 Define adjacency matrix with example. 2m
2 11 Define incidence matrix with example. 2m
2 12 Define cycle matrix with example. 2m
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Mention at least two differences between adjacency matrix and incidence

matrix.

Define distance between two vertices of a graph G with example.
Define eccentricity of a vertex of a graph G with example.
Define radius of a graph GG with example.

Define diameter of a graph G with example.

Define center of a graph G with example.

Define distance matrix of a graph G with example.

Give an example of dominating set D such that D is common dominating
set for C5 and Cs.

Give an example of dominating set D such that D is common dominating

set for K5 and K.

Give an example for a minimal dominating set need not be minimum.
Define minimal dominating set with example.

Define domination number of a graph G with example.

Find domination number of K, and E.

Find domination number of K,,,, and m

Find domination number of C,, and P,.
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If G is a (p,q) graph then show that L(G) is a (q,qr) graph where,
1< 5
qr = B Zldi -9

Prove that K 3 is not a line graph.
Write all the forbidden subgraphs for line graphs.

Demonstrate matrix tree theorem on K, — e.

A graph G on p points is connected if and only if (A + I)P~! has no zero
entries.

Define adjacency eigen value of a graph. Find the adjacency eigen value
of Cy and W, graphs.

Let T be a tree with V(T') = {v1,vq,...,v,} n > 2 and L be Laplacian
of T. then show that y = 1 is an eigen value of L with multiplicity atleast
p(T) = q(T).

Find the minimal dominating set of C),, m, K., Kpyn, Wy, and P,
graphs.

If G is a graph having p points and ¢ lines then prove that p—q¢ < v(G) <
p— A.

Prove that every non trivial connected graph G has a dominating set D
whose component V' — D is also a dominating set.

If G be any graph then show that p — ¢ < v(G), further v(G) =p — ¢ if

and only if each component of G is a star.
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Let T be a tree with V/(T') = {vy, va,...,v,}, n > 2 and D be the distance

matrix of T, then show that D has one positive and n — 1 negative eigen

values.

Let T be a tree with V(T') = {v1,v9,...,v,}, D be the distance matrix

of T"and L be Laplacian of T. Let p; > 0 > pg > --- > u, be the eigen

values of D and Let Ay > --- > \,,_1 > A\, = 0 be eigen values of L, then
-2 -2

-2
h that 0 > — > > — >0 >
show tha A1 = H = Ao T Ao

Let T be a tree with V(T) = {v1,ve,...,v,}, n > 2 and D be the

2 fhn-

distance matrix of T, then show that the determinant of D is given by
detD = (—=1)""1(n — 1)"2

Let T be a tree with V(T') = {v1, v, ...,v,}, and L be Laplacian of T.
Suppose p > 1 is an integer eigen value of L with u as a corresponding
eigen vector, then show that the followings are hold i). p divides n ii).
No coordinate of u is zero iii). The algebraic multiplicity of p is one.
Show that the following statements are equivalent i). G is a line graph.
ii). The line of G can be partitioned into complete subgraphs in such a
way that no points lies in more than two of the subgraphs.

A graph is the line graph of a tree if and only if it is a connected block

graph in which each cut point is on exactly two blocks.

The line graph of a graph G is path if and only if G is path.
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Let GG; and G be two connected graph with isomorphic line graph. Then
show that GG; and G5 are isomorphic unless one is K3 and other is K 3.
If G, and G9 are isomorphic then prove that L(G;) and L(G3) are also
isomorphic.

State and prove Matrix tree theorem.

For any graph with incidence matrix B, show that A(L(G)) = B B—21I,,
where BT is a transpose of B.

If A= (a;j) be the adjacency matrix of a graph G then prove that (i, j)™"
entry in A" [(A™);;] is the number of walks of length n from v; to v; with
example.

If G has incidence matrix B and cycle matrix C' then CBT = 0(mod2)

where, B” is the transpose of B.

Find the labelled spanning trees on p points using matrix tree theorem.
Let T be a tree with V(T') = {vy,va,...,v,} n > 2 and L be Laplacian
of T. If p is an eigen value of L then show that the algebraic multiplicity
of p is atmost p(T') — 1.

A dominating set D is a minimal dominating set if and only if for each
vertex v inD, one of the following condition holds; i) v is an isolated

vertex of D. ii)there exist a vertex u in V' — D such that N(z)ND = {v}.

<y(G) <n—p.

If G is a graph of order n then prove that L—FLA(G)J
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Define point covering number of a graph, then prove that for any (p,q)
graph without isolated point 7(G) < «(G). where «(G) is point covering
number of G.

Define minimal dominating set. If G be a graph without isolated points
and D is a minimal dominating set then show that V' — D is a dominating
set.

Let G be a connected graph with V(G) = {vy,vs,...,v,}, D be the
distance matrix of GG, and G4, G, ..., G} be the blocks of GG, then prove

k

that the following are hold: i). cofD(G) = H cof D(G;) ii). detD(G) =

=1

Z detD(G;) [ [ cof D(Gy).
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Instruction to the Candidates: Answer Al the Questions:

PART - A

Answer the following: 7x2=14

. a Prove that there are no. 3-connected graph with 7 edges.
b. Define a line graph with an example.
c. Show that every planar graph contains a vertex of degree at most 8
d. Give two example of graphs which are both Eulerian and Hamiltonian.
Define a cycle matrix with an example.
f. Define an arboricity with an example.

g. Mention at least two differences between adjacency matrix and incidence matrix.

PART -B
a. Show that: 08
L2 The following statements are equivalent for a connected graph G:
' i) G is Eulerian
" ii) Every point of G has even degree
) i) The set of lines of G can be partitioned into cycles.
b If p >3 and for every pair u and v of non adjacent point ray deg(x)+deg(v)2 p, 06
then prove that G is Hamiltonian.
OR
3. a. If G, and G, are isomorphic then prove that L(G,) and L(G,) are also isomorphic. 06
b. IfGisa (p, q) graph where point have deg i, then prove that LCG has g points and 04
e q+%Zd,’ lines
c. Write all the forbidden sub graphs for line graphs. 04
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Let G, and G, be connected graph with isomorphic line graphs, then G, and G, are
isomorphic unless one is K, and other.
Prove that the complete graph K,,,, is 2 — factorable.

OR

Prove that G is a line graph if and only if the lines of G can be portioned into complete
sub group in such a way that no point lies in more than (wo of the sub graphs.

Prove that every planer graph is 5 — colourable.
For any graph G, show that x(G) < 1+ max&(G'), where the maximum is taken over all

induced sub graph G' of G.
For any graph G, show that the sum and product of x and ¥ satisfies the inequality
2/p<x+x<p+l

p+l1 Jz
2

prfS(

OR
Prove that a graph is bicolorable if and only if it has not odd cycle. .
Show that every Peterson graph is non-hamiltonian.

State and prove matrix tree theorem.

AG
OR
Prove that G with point *p’ is tree if and only if f(G, ) =¢(-1)"".

Show that the point graph and the line graph of a graph G are isomorphic if and only if G
has at most one isolated point and K> is nt a component of G.

If G is a graph of ordin, then prove that [l +" ] < y(G)<n-A(G)
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