St.Philomena's College (Autonomus), Mysore PG Department of Mathematics

Question Bank (Revised Curriculum 2018 onwards)
Second Year - Fourth Semester (2018 -20 Batch)
Course Title (Paper Title): Measure and Integration Q.P.Code-57301

Unit
S.No

1 Give an example of of an algebra which is not Sigma algebra
2 Give an example of a set which is both F_{σ} and G_{δ} set.
2 m
3 Define a Borel set.
2 m
4 Give an example of an uncountable set with measure zero.
Give an example of a continuous function g and a measurable function 5 h such that $h \circ g$ is not measurable.

6 If outer measure of of a set is zero, then show that it is measurable.
2 m
7 Construct an open set O such that $\mathbb{Q} \subset O$ and $m^{*}(O) \leq 1$
Let f be a nonnegative measurable function show that $\int f=0$ implies
8
Question
Marks
2 m

2 m

居 $f f=0$ implies
$f=0$ almost everywhere.
9 Show that the set of all transcendental number measurable set. 2 m
10 Give an example of a signed measure which is not a measure.
2 m
11 Which measurable subsets of \mathbb{R} are connected ? Justify.
2 m

If $m^{*}(A)>0$ is it possible to find and open interval contained in A ? justify your answer.

13 Define a complete measure space with an example.
2 m
If f and g are bounded ,measurable functions defined on a set E of finite
14 measure and $f \leq g$ a.e. then show that $\int_{E} f=\int_{E} g$

Let f be a nonnegative measurable function show that $\int f=$ 15 0 implies $f=0$ a.e.

16 Define simple function and give an example
If f is absolutely continuous on $[a, b]$ then show that $E=$
17 $\left\{x \in[a, b] / f^{\prime}>0\right\}$ is a measurable set.

18 Define a signed measure and give an example.
2 m
19 Show that the Hahn- decomposition need not be unique.
Give an example of a continuous function which is not of bounded vari-
20 ation.

Show that the characteristic function χ_{A} is measurable if and only if A
21 is measurable.

22 Give an example of a signed measure which is not a measure.
23 Show that $\chi_{A \cup B}=\chi_{A}+\chi_{B}-\chi_{A} \chi_{B}$. 2 m

24 Define positive set and negative set with respect to a signed measure. 2 m

25 Show that if γ_{1} and γ_{2} are singular with respect to μ then so isc $c_{1} \gamma_{1}+c_{2} \gamma_{2} . \quad 2 \mathrm{~m}$

26 Prove or disprove 'Any subset of a mesurable set is measurable'.
4 m

If $f(x)=g(x)$, almost everywhere on E , prove that $\int_{E} f(x) d x=$
27 $\int_{E} g(x) d x$.

If $f(x)$ is measurable on E then prove that $(f(x))^{2}$ is also measurable on E

30 If $\left\{f_{n}\right\}$ is a sequence of non negative measurable function which is defined 31 on a measurable set E.Show that $\int_{E} \lim f_{n}=\lim \int_{E} f_{n}$

If f and G are bounded measurable function on a set E of finite measure
32 prove that $\int_{E} f+g=\int_{E} f+\int_{E} g$.

Prove that f is bounded and measurable on E if and only if f is Lebesgue
33 integrable on E.

If f is integrable on on $[\mathrm{a}, \mathrm{b}]$ and $\int_{a}^{x} f(t) d t=0 \forall x \in[a, b]$,show that
34 $f(t)=0$ almost everywhere on $[a, b]$

Prove that if $f(x)$ is measurable on E , then for any real constants c,
$f(x)+c$ is measurable.
If f_{1} and f_{2} are measurable on E , then prove that $f_{1}+f_{2}$ is measurable
36 on E .

If f and G are bounded measurable function on a set E of finite measure
37
prove that $\int_{E} f+g=\int_{E} f+\int_{E} g$

38 Prove that $\int_{E} c f(x)=c \int_{E} f(x)$ and $\int_{E} c d x=c m(E)$ for any constant c. If $E=E_{1} \cup E_{2}$, where E_{1} and E_{2} are disjoint then $\int_{E} f(x) d x=$ 39 $\int_{E_{1}} f(x) d x+\int_{E_{2}} f(x) d x$

40 State and prove Vitali covering lemma.
Show that function f is of bounded variation on $[\mathrm{a}, \mathrm{b}]$ if and only if it 41 is a difference of two monotonic function

If $f(x)$ and $g(x)$ are bounded and measurable on E then $f(x) g(x)$ is Lebesgue integrable on E

If $f(x)$ is bounded and measurable on E then prove that $|f(x)|$ is 43 Lebesgue integrable on E .

Prove that a function is Riemann Integrable in [a,b] if and only if the set 44 of discontinuity of $f(x)$ in $[\mathrm{a}, \mathrm{b}]$ has measure zero.

If $f(x)$ is continuous almost everywhere in $[\mathrm{a}, \mathrm{b}]$,prove that $f(x)$ is 45 Lebesgue Integrable on $[a, b]$

Prove that if $f(x)$ and $g(x)$ are of bounded and measure on E then 46 $\int_{E}\{f(x)-g(x)\} d x=\int_{E} f(x) d x-\int_{E} g(x) d x$.

47 Prove that $\int_{E_{1} \cup E_{2}} f(x) d x=\int_{E_{1}} f(x) d x+\int_{E_{2}} f(x) d x-\int_{E_{1} \cap E_{2}} f(x) d x$
-

促

Prove that if $f(x)$ and $g(x)$ are of bounded and measure on E then
$48 \int_{E}\{f(x)-g(x)\} d x=\int_{E} f(x) d x-\int_{E} g(x) d x$. Prove that $\int_{E_{1} \cup E_{2}} f(x) d x=7 \mathrm{~m}$ $\int_{E_{1}} f(x) d x+\int_{E_{2}} f(x) d x-\int_{E_{1} \cap E_{2}} f(x) d x$

49 Prove that $\int_{E_{1} \cup E_{2}} f(x) d x=\int_{E_{1}} f(x) d x+\int_{E_{2}} f(x) d x-\int_{E_{1} \cap E_{2}} f(x) d x$
7 m If $\left\{f_{n}\right\}$ is a sequence of measurable functions on E then prove that 50 $\varlimsup \lim _{n \rightarrow \infty} f_{n}(x)$ and $\underline{\lim }_{n \rightarrow \infty} f_{n}(x)$ is measurable on E .

If S is non measurable set ,consider the characterstic function $\chi(x)=$ 51 1 if $x \in S, 0$ otherwise. Prove that $\chi(x)$ is non measurable.

If f is riemann integrable in $[a, b]$ then prove that it is Lebesgue integrable
52
10 m in $[\mathrm{a}, \mathrm{b}]$.Does the converse hold? Justify.

State and prove Hahn Decomposition theorem. give an example to show
53
that the decomposition need not be unique
Define absolutely continuous function. If f is absolutely continuous on
54 then show that f is of bounded variation. Also show that the product of 10 m two absolutely continuous function is absolutely continuous

55 State and prove Radon- Nikodym theorem 14 m

St. Philomena's College (Autonomous) Mysore
 IV Semester M.Sc. Makeup Examination : August - 2018

 Subject: MATIIEMATICS

 Subject: MATIIEMATICS}

Title: Measure theory and Integration

" Time: 3 llours

Max. Marks: 70

Instruction to the Candidates: 1) Answer All the Questons.

2) All questions carry equal marks.
PAR'T - A
Answer the following:
1. a. Define a Borel set.
b. Give an example of an uncountable set which has measure zero.
c. Prove that the function $f(x)=\left\{\begin{array}{ll}0 & \text { if } x \text { irrational } \\ 1 & \text { if } x \text { rational }\end{array}\right.$ is Lebesgue integrable.
d. Prove that pointwise convergence alone is not sufficient to justify that $\lim _{n \rightarrow \infty} \int_{E} f_{n}=\int_{E} f$.
e. Is every function of bounded variance continuous? Justify.
f. Define a measurable space and give an example.
g. Show that the Hahn decomposition need not be unique.

-

PART - B
2. a. Prove that the collection μ of all Lebesgue measurable sets is a σ-algebra.
b. Prove that the interval (a, ∞) is measureable. Deduce that every Borel set is measurable.

OR

3. a. If A is any set and $\epsilon>0$, then show that there is an open set G such that $A \subset G$ and $m^{*} G \leq m^{*} A+\epsilon$. Prove also that there is a G in G_{δ} such that $A \subset G$ and $m^{*} A=m^{*} G$.
b. Give an example of a non-measurable set.
4. State and prove the following:
i) Bounded Convergence theorem 06
ii) Fatou's lemma

OR

5. a. If f and g are integrable over E, show that the function $f+g$ is integrable over E and
$\int_{E} f+g=\int_{E} f+\int_{E} g$.
b. State and proye Lebesgue Convergence theorem.
c. Let f be integrable over E. Then given $\in>0$, show that there is a simple function ϕ such that $\int_{E}|f-\phi|<\epsilon$.
6. a. State and prove Vitali's lemma.
b. State and prove Chebychev's inequality. Use this inequality to prove that if f is a non-negative measurable function on E, then $\int_{E} f=0$ if and only if $f=0$ a.e on E.

GR

7. a. If f is an integrable function on $[a, b]$ and suppose that $F(x)=\int_{a}^{x} f(t) d t+F(a)$, then prove that $F^{\prime}(x)=f(x)$ a.e on $[a, b]$.
b. If f is absolutely continuous on $[a, b]$ and $f^{\prime}(x)=0$ a.e, prove that f is continuous.
8. State and prove Radon - Nikodym theorem.

OR

9. a. Let E be a measurable set such that $0<\gamma(E)<\infty$. Prove that there is a positive set A contained in E with $\gamma(A)>0$.
b. State and prove Jordan - Decomposition theorem.
