St.Philomena's College (Autonomus), Mysore

PG Department of Mathematics

Question Bank (Revised Curriculum 2018 onwards)

Second Year - Fourth Semester (2018 - 20 Batch)

Course Title (Paper Title): Measure and Integration Q.P.Code-57301

Unit	S.No	Question	Marks
1	1	Give an example of of an algebra which is not Sigma algebra	$2\mathrm{m}$
1	2	Give an example of a set which is both F_{σ} and G_{δ} set.	$2\mathrm{m}$
1	3	Define a Borel set.	$2\mathrm{m}$
1	4	Give an example of an uncountable set with measure zero.	$2\mathrm{m}$
4	5	Give an example of a continuous function g and a measurable function	on Om
1		h such that $h \circ g$ is not measurable.	2111
1	6	If outer measure of of a set is zero, then show that it is measurable.	$2\mathrm{m}$
1	7	Construct an open set O such that $\mathbb{Q} \subset O$ and $m^*(O) \leq 1$	$2\mathrm{m}$
1	0	Let f be a nonnegative measurable function show that $\int f = 0$ implies	es
	0	f = 0 almost everywhere.	2111
1	9	Show that the set of all transcendental number measurable set.	$2\mathrm{m}$
2	10	Give an example of a signed measure which is not a measure.	$2\mathrm{m}$
2	11	Which measurable subsets of $\mathbb R$ are connected ? Justify.	$2\mathrm{m}$

1	12	If $m^*(A) > 0$ is it possible to find and open interval contained in A? justify your answer.	2m
2	13	Define a complete measure space with an example.	2m
2	14	If f and g are bounded , measurable functions defined on a set E of finite measure and $f\leq g$ a.e. then show that $\int_E f=\int_E g$	2m
2	15	Let f be a nonnegative measurable function show that $\int f = 0$ implies $f = 0$ a.e.	2m
2	16	Define simple function and give an example	$2\mathrm{m}$
3	17	If f is absolutely continuous on $[a,b]$ then show that $E = \{x \in [a,b]/f' > 0\}$ is a measurable set.	2m
3	18	Define a signed measure and give an example.	2m
3	19	Show that the Hahn- decomposition need not be unique.	2m
3	20	Give an example of a continuous function which is not of bounded vari- ation.	2m
4	21	Show that the characteristic function χ_A is measurable if and only if A is measurable.	2m
4	22	Give an example of a signed measure which is not a measure.	$2\mathrm{m}$
4	23	Show that $\chi_{A\cup B} = \chi_A + \chi_B - \chi_A \chi_B$.	2m
4	24	Define positive set and negative set with respect to a signed measure.	$2\mathrm{m}$
4	25	Show that if γ_1 and γ_2 are singular with respect to μ then so is $c_1\gamma_1 + c_2\gamma_2$.	2m

2	26	Prove or disprove 'Any subset of a mesurable set is measurable'.	4m
9	97	If $f(x) = g(x)$, almost everywhere on E , prove that $\int_E f(x) dx =$	Лm
2	21	$\int_E g(x) dx.$	4111
9	28	If $f(x)$ is measurable on E then prove that $(f(x))^2$ is also measurable on	4~
2	20	Ε	4111
2	30	If f_1andf_2 are measurable on E , then prove that f_1f_2 is measurable on E	4m
9	21	If $\{f_n\}$ is a sequence of non negative measurable function which is defined	4m
0	91	on a measurable set E.Show that $\int_E lim f_n = lim \int_E f_n$	
9	20	If f and G are bounded measurable function on a set E of finite measure	4m
0	52	prove that $\int_E f + g = \int_E f + \int_E g$.	
4	22	Prove that f is bounded and measurable on E if and only if f is Lebesgue	1
4	00	integrable on E.	4111
4	34	If f is integrable on on [a , b] and $\int_a^x f(t) dt = 0 \ \forall x \in [a,b]$, show that	4m
4	94	f(t) = 0 almost everywhere on $[a, b]$	
1	35	Prove that if $f(x)$ is measurable on E ,then for any real constants c ,	5
T	00	f(x) + c is measurable.	5111
1	36	If f_1 and f_2 are measurable on E ,then prove that $f_1 + f_2$ is measurable	5m
Ţ	50	on E.	0111
ર	37	If f and G are bounded measurable function on a set E of finite measure	6m
J	37	prove that $\int_E f + g = \int_E f + \int_E g$	0111

1	38	Prove that $\int_E cf(x) = c \int_E f(x)$ and $\int_E cdx = c \ m(E)$ for any constant c .	$7\mathrm{m}$
1	30	If $E = E_1 \cup E_2$, where E_1 and E_2 are disjoint then $\int_E f(x) dx =$	$7\mathrm{m}$
1	00	$\int_{E_1} f(x) dx + \int_{E_2} f(x) dx$	
1	40	State and prove Vitali covering lemma.	$7\mathrm{m}$
1	41	Show that function f is of bounded variation on [a , b] if and only if it	$7\mathrm{m}$
1	11	is a difference of two monotonic function	
3	42	If $f(x)$ and $g(x)$ are bounded and measurable on E then $f(x)g(x)$ is	7m
0		Lebesgue integrable on E	
3	43	If $f(x)$ is bounded and measurable on E then prove that $ f(x) $ is	7m
	10	Lebesgue integrable on E.	
4	44	Prove that a function is Riemann Integrable in [a,b] if and only if the set	$7\mathrm{m}$
		of discontinuity of $f(x)$ in [a,b] has measure zero.	
4	45	If $f(x)$ is continuous almost everywhere in [a,b], prove that $f(x)$ is	7m
		Lebesgue Integrable on [a,b]	
4	46	Prove that if $f(x)$ and $g(x)$ are of bounded and measure on E then	$7\mathrm{m}$
		$\int_{E} \{f(x) - g(x)\} dx = \int_{E} f(x) dx - \int_{E} g(x) dx .$	
4	47	Prove that $\int_{E_1 \cup E_2} f(x) dx = \int_{E_1} f(x) dx + \int_{E_2} f(x) dx - \int_{E_1 \cap E_2} f(x) dx$	$7\mathrm{m}$
		Prove that if $f(x)$ and $g(x)$ are of bounded and measure on E then	
2	48	$\int_E \{f(x) - g(x)\} dx = \int_E f(x) dx - \int_E g(x) dx$. Prove that $\int_{E_1 \cup E_2} f(x) dx =$	$7\mathrm{m}$
		$\int_{E_1} f(x) dx + \int_{E_2} f(x) dx - \int_{E_1 \cap E_2} f(x) dx$	

2	49	Prove that $\int_{E_1 \cup E_2} f(x) dx = \int_{E_1} f(x) dx + \int_{E_2} f(x) dx - \int_{E_1 \cap E_2} f(x) dx$	$7\mathrm{m}$
0	50	If $\{f_n\}$ is a sequence of measurable functions on E then prove that	8m
2	50	$\overline{\lim} \lim_{n \to \infty} f_n(x)$ and $\underline{\lim}_{n \to \infty} f_n(x)$ is measurable on E.	
0	۳1	If S is non measurable set , consider the characteristic function $\chi(x)$ =	10m
Z	51	1 if $x \in S, 0$ otherwise. Prove that $\chi(x)$ is non measurable.	
2	50	If f is riemann integrable in $[a, b]$ then prove that it is Lebesgue integrable	10m
3	52	in [a,b].Does the converse hold? Justify.	
-		State and prove Hahn Decomposition theorem. give an example to show	10m
3	53	that the decomposition need not be unique	
		Define absolutely continuous function. If f is absolutely continuous on	
4	54	then show that f is of bounded variation. Also show that the product of	10m
		two absolutely continuous function is absolutely continuous	
4	55	State and prove Radon- Nikodym theorem	14m

AVSURU 170 0 10 Q.P Code: 16MSMTDH01

St. Philomena's College (Autonomous) Mysore

IV Semester M.Sc. Makeup Examination : August - 2018 Subject: MATHEMATICS

Title: Measure theory and Integration

[°]Time: 3 Hours

Instruction to the Candidates: 1) Answer All the Questions.

2) All questions carry equal marks.

PART - A

Answer the following:

a. Define a Borel set. 1.

- b. Give an example of an uncountable set which has measure zero.
- c. Prove that the function $f(x) = \begin{cases} 0 & if x irrational \\ 1 & if x rational \end{cases}$ is Lebesgue integrable.

d. Prove that pointwise convergence alone is not sufficient to justify that $\lim_{n \to \infty} \int_{r} f_n = \int_{r} f$.

Is every function of bounded variance continuous? Justify. e.

Define a measurable space and give an example. f.

Show that the Hahn decomposition need not be unique. g.

PART-B

2.	а.	Prove that the collection μ of all Lebesgue measurable sets is a σ - algebra.	07
	b.	Prove that the interval (a, ∞) is measureable. Deduce that every Borel set is measurable.	07
		OR	
3.	a.	If A is any set and $\in > 0$, then show that there is an open set G such that $A \subset G$ and	07
	ь.	$m^{\bullet}G \leq m^{\bullet}A + \in$. Prove also that there is a G in G_{δ} such that $A \subseteq G$ and $m^{\bullet}A = m^{\bullet}G$. Give an example of a non-measurable set.	07

PTO

 $7 \times 2 = 14$

Max. Marks: 70

4.		State and prove the following:		
		i) Bounded Convergence theorem	06	\$
		ii) Fatou's lemma	05	
		OR		
5.	a.	If f and g are integrable over E, show that the function $f+g$ is integrable over E and	06	
		$\int_{F} f + g = \int_{F} f + \int_{F} g .$		
	b.	State and prove Lebesgue Convergence theorem.	04	
	c.	Let f be integrable over E. Then given $\in > 0$, show that there is a simple function ϕ	04	
		such that $\int_{E} f - \phi < \epsilon$.		
6.	a.	State and prove Vitali's lemma.	08	
	b.	State and prove Chebychev's inequality. Use this inequality to prove that if f is a	06	
		non-negative measurable function on E, then $\int_{E} f = 0$ if and only if $f = 0$ a.e on E.		
		OR		
7.	a.	If f is an integrable function on [a, b] and suppose that $F(x) = \int_{a}^{x} f(t) dt + F(a)$, then	07	
		prove that $F'(x) = f(x) a.e$ on $[a, b]$.	-	e
	b.	If f is absolutely continuous on [a, b] and $f'(x) = 0$ a.e., prove that f is continuous.	07	
8.		State and prove Radon – Nikodym theorem.	14	•
		OR		
9.	a.	Let E be a measurable set such that $0 < \gamma(E) < \infty$. Prove that there is a positive set A	07	
		contained in E with $\gamma(A) > 0$.	×.	
	b.	State and prove Jordan – Decomposition theorem.	07	
		,		

Scanned by CamScanner