St.Philomena's College (Autonomus), Mysore

PG Department of Mathematics

Question Bank (Revised Curriculum 2018 onwards)

Second Year - Fourth Semester (2018 - 20 Batch)

Course Title (Paper Title): Ordinary and Partial Differential Equations

Q.P.Code-57303

\mathbf{Unit}	S.No	Question Ma	arks
1	1	Solve the IVP $y'' + xy' + xy = x + y - 1$, where $x \in [0 \ 1]$ with the	2m
		condition $y(log2) = \frac{1}{2} = y'(log2)$	
1	2	Solve the IVP $y'' + xy' + xy = x + y - 1$, where $x \in [0 \ 1]$ with the	2m
		condition $y(log2) = 2 = y'(log2)$	
1	3	Solve the IVP $y'' - y^2 + 6y = 0$ with $y(1) = e^2$ and $y'(1) = 3e^2$	$2\mathrm{m}$
1	4	When does the uniqueness of the solution of an Initial Value problem	Jm
		fails?	2111
1	5	Show that $V = \{y/ y'' + P(x)y' + Q(x)y = 0\}$ forms a vector space over	9 m
		real field.	2111
1	6	Define Wronskian of y_1 and y_2 where y_1 , y_2 are the solution of second	Эm
		order linear ordinary differential equation and hence find $W(e^x , e^{-x})$	2111
1	7	Define trajectory with an example.	2m
1	8	Comment on critical points by giving suitable example	$2\mathrm{m}$

1	9	Define stable critical point with an example.	2m
0	10	Define a regular singular point. Determine whether $x = 0$ is a regular	2m
2	10	singular point of $2x^2y'' + 7x(x+1)y' - 3y = 0$	
0		Show that x =0 is a ordinary point of $(x^2 - 1)y'' + xy' - y = 0$ but $x = 1$	0
2	11	is a regular singular point	2m
2	12	Define Hermite polynomial with its Generating function.	$2\mathrm{m}$
2	13	Prove that $H'_n(x) = 2nH_{n-1}(x)$, where $H_n(x)$ is Hermite polynomial	$2\mathrm{m}$
2	14	Show that $\{J_{\frac{-1}{2}}(x)\}^2 + \{J_{\frac{1}{2}}(x)\}^2 = \frac{2}{\pi x}$	$2\mathrm{m}$
2	15	Show that $J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$	$2\mathrm{m}$
2	16	Show that $J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$	$2\mathrm{m}$
3	17	Define semilinear and quasilinear partial differential equation.	$2\mathrm{m}$
0	10	Form the partial differential equations by eliminating arbitrary constant	0
3	18	z = ax + by + ab	2m
0	10	Obtain the PDE for $z = x + ax^2y^2 + b$; where 'a' and 'b' are arbitrary	0
3	19	constants.	2m
3	20	Form the PDE by eliminating arbitrary function F for $z = xy + F(x^2 + y^2)$.	$2\mathrm{m}$
4	21	Form the PDE by eliminating arbitrary function F for $z = F(\frac{xy}{z})$.	$2\mathrm{m}$
4	22	Form the PDE by eliminating arbitrary function F for $\phi(x+y, x-\sqrt{2}) = 0$	$2\mathrm{m}$
4	23	Solve $p + q - pq = 0$ by Charpit's Method	$2\mathrm{m}$
4	24	Find the complete integral of $p^2 + q^2 = x + y$	2m

4	25	Find the variables ξ and η which reduces to PDE $u_{xx} - x^2 u_{yy} = 0$.	2m
1	26	Find a particular solution of $y'' + 4y = \tan 2x$.	4m
		By Wronskian to prove that two solutions of second order linear homo-	
1	27	geneous equation are linearly independent if they have common zero in	4m
		the inteval .	
1	<u> </u>	Show that $x^2y'' + xy' + (x^2 - p^2)y = 0$; where $x \neq 0$ has infinitely many	4m
1	20	zeroes.	
1	20	Comment on the nature of the critical points by its eigen value of a	4m
1	90	dynamical system with two constraints.	
2	31	Prove that $2nJ_n(x) = xJ_{n-1}(x) + J_{n+1}(x)$	4m
2	32	Prove that $xJ'_n = -nJ_n(x) + xJ_{n-1}(x)$	4m
3	33	Solve $(z - y)p + (x - z)q = y - x$.	4m
2	34	Prove that $xJ'_{n}(x) = nJ_{n}(x) - xJ_{(n+1)}(x)$	$5\mathrm{m}$
3	35	Solve $\left(\frac{y^2z}{x}\right)p + xzq = y^2$	$5\mathrm{m}$
3	36	Solve $p + 3q = 5z + tan(y - 3x)$	$5\mathrm{m}$
2	37	Find the which intersects the surfaces of the system $z(x+y) = c(3z+1)$	5m
5	57	orthogonally and which passes through the the circle $x^2 + y^2 = 1$; $z = 1$.	
		Find the surface which is orthogonal to the parameter system $z =$	
3	38	$cxy(x^2 + y^2)$ and which passes through the hyperbola $x^2 - y^2 = a^2$ and	$5\mathrm{m}$
		z = 0 .	

1	39	Explain the method to find the second solution using a known solution	6m
1		for second order linear homogeneous differential equation.	
1	40	Find the particular solution of $y'' + y = \cot^2 x$ and $y'' + y = \cot 2x$	$6\mathrm{m}$
1	41	Show the critical points of $\frac{dx}{dt} = x$ and $\frac{dy}{dt} = -y$ is a saddle point	$6\mathrm{m}$
2	42	Prove the following $P_n(x) = P'_{n+1}(x) - 2xP'_n(x) + P'_{n-1}(x)$	$6\mathrm{m}$
4	40	Comment on classification of PDE in the variables and hence classify the	6m
4	43	PDE $u_{xx} + u_{yy} + u_{zz} = 0.$	
1	44	Define Wronskian and show that wronskian is identically zero or never	7m
1		zero.	
1	45	Show that the solution $y_1(x)$, $y_2(x)$ of $y'' + p(x)y' + Q(x)y = 0$ are	7m
1		linearly dependent if and only if $W(y_1, y_2) = 0$	
	46	Verify that $y = e^x$ is a known solution of $xy'' - (2x+1)y' + (x+1)y =$	$7\mathrm{m}$
1		0.Hence find the general solution.	
1	47	Find the general solution of $(x^2 - 1)y'' - 2xy' + 2y = (x^2 - 1)^2$	$7\mathrm{m}$
2	48	State and prove the Rodrigue's formula for Legendre Polynomial	$7\mathrm{m}$
2	49	$\int \frac{2}{2n+1}, \text{if} m=n$	7m
_		Show that $\int_{-1}^{1} P_m(x) P_n(x) = \begin{cases} 0 & \text{otherwise} \end{cases}$,
3	50	Find the complete integral of $px + qy = pq$; $q \neq 0$. (7m)	$7\mathrm{m}$
3	51	Solve by Charpit's method $px + qy = pq$; where $p = \frac{\partial z}{\partial x}$ $q = \frac{\partial z}{\partial y}$.	$7\mathrm{m}$

Use the Adomian Method to solve IVP $u_{tt} = u_{xx}, 0 < x < \pi; t > 0$ Boundary Condition u(0,t) = 0 $u(\pi,t) = 0$ initial conditions u(x,0) =3 52 $7\mathrm{m}$ $0, u_t(x, 0) = sinx;$ Use the Decomposition method and the noise term phenomenon to solve the following inhomogeneous PDE $u_x + u_y = (1 + x)e^y$; u(0, y) =3 537m0, u(x, 0) = xSolve $u_{tt} - c^2 u_{xx} = 0$ with $u(x, 0) = f(x); u_t(x, 0) = g(x); -\infty < x < 0$ 54 $7\mathrm{m}$ 4 $\infty; t>0$. Solve the following homogeneous heat equation by Adomian method, $PDE \ u_t = u_{xx}; 0 < x < \pi, t > 0$ Boundary Condition $u(0,t) = 0; t \ge 0$ 4 55 $7\mathrm{m}$ $0; u(\pi, t) = 0; t \ge 0;$ Initial Condition u(x, 0) = sinxUse modified decomposition method to solve $u_x + u_y = (1+x)e^y$; u(0, y) =4 56 $7\mathrm{m}$ 0; u(x,0) = xUse the modified decomposition method to solve Ricatti's Differential 4 57 $7\mathrm{m}$ Equation $y' = Ax^2 + y^2; \ y(0) = 0$ Use the Adomian Decomposition method to solve IVP PDE ; $u_t =$ $u_{xx}, 0 < x < \pi; t > 0$ Boundary Condition $u(0,t) = e^{-t}; t \ge 0$ $u(\pi,t) =$ 4 $7\mathrm{m}$ 58 $\pi - e^{-t}; t \ge 0$ initial conditions $u(x, 0) = x + \cos x;$

		Show that $y_1(x) = \frac{\cos x}{\sqrt{x}}$ is a known solution of $x^2y'' + xy' + (x^2 - \frac{1}{4})y = 0$.	
1	59	Hence solve the Initial value problem $y'' + \frac{1}{x}y' + (1 - \frac{1}{4x^2})y = 0; x \neq 0$	8m
		0 with the condition $y(\frac{\pi}{2}) = \frac{2}{\pi}$ and $y'(\frac{\pi}{2}) = -\frac{2}{\pi}(1 + \frac{1}{\pi}).$	
1	60	Explain the method of finding the solution by transforming a linear or-	8m
1	00	dinary differential equations into normal form	
2	61	Explain the power series method for Bessels differential equation	8m
4	62	Reduce $e^{2x}u_{xx} + u_{yy} + 2e^{x+y}u_{xy} + e^{2y}u_{yy} = c$ into canonical form.	8m
1	63	State and prove Strum's separation theorem	10m
1	C A	If $u(x)$ is a nontrival solution of $u'' + q(x)u = 0, \forall x > 0$ and $\int_1^{\infty} q(x)dx =$	10m
1	04	∞ ; then prove that q(x) has infinitely many zeroes on positive $x - axis$	
1	CE.	State and prove Picard's theorem for existence and uniqueness of initial	14m
1	00	value problem.	
		Explain the general method to find the power series solution of second	
2	66	order linear differential equation and hence solve the Airy's equation	14m
		y'' + xy = 0	

Q.P Code: 16MSMTBS04

St. Philomena's College (Autonomous) Mysore II Semester M.Sc. C3 Component - Final Examination April - 2017

Subject: MATHEMATICS

Title: ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS (SC) Time: 3 Hours Max Marks: 70

PART-A

Answer the following questions:

1. a. Define a Stable Critical point with an example.

- b. When do the given two solutions are linearly dependent?
- c. If $z = f(x^2 y) + g(x^2 y)$, show that $\frac{\partial^2 z}{\partial x^2} 4x^2 \frac{\partial^2 z}{\partial y^2} = \frac{1}{x} \frac{\partial z}{\partial x}$.
- d. Show that $y_1 = \cos x + \sin x$, $y_2 = \cos x \sin x$ are two linearly independent solution of $y^{11} + y = 0$.
- e. Write the normal form of a Legendre polynomial and find q(x) in it.
- f. State Strum Comparison theorem.
- g. Write the Parseval's equation.

PART-B

Answer the following:

2. State and prove Picard's theorem for existence and uniqueness of solution. 14

OR

- 3. a State and prove Sturm's Separation theorem.
 - b Write and general solution of initial Value problem $\frac{d^2 y}{dx^2} 4\frac{dy}{dx} + 4y = 0$, y(0) = 1 and $y^1(0) = 2$.

РТО

Scanned by CamScanner

7x2 = 14

8

6

Find the general solution of the Gauss hypergeometric equation $x(1-x)y^{11} + [c - (a+b+1)x]y^{1} - ab y = 0$ in the form of Frobenious series solution 4. a valid in 0 < x < 1.

Show that Zero's of $J_n(x)$ are simple. b

OR

5 a Show that
$$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x)$$
 and
 $P_n(x) = P_{n+1}^1(x) - 2xP_n^1(x) + P_{n-1}^1(x)$.
b Show that $\int_{-1}^{1} P_m(x)P_n(x) dx = \begin{cases} 0 & m \neq n \\ \frac{1}{2n+1} & m = n \end{cases}$.

5. a Describe the Green's functions method for solving a standard Strum – Liouville 7
problem.
$$(\pi)$$
 7

b Solve by Greens function method
$$y^{11} + y = f(x), x \in \left[0, \frac{\pi}{2}\right], y^{1}(0) = 0, y^{1}\left(\frac{\pi}{2}\right) = 0.$$

OR

7 a Reduce
$$\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} + \frac{\partial^2 z}{\partial y^2} = 0$$
 to Cannonical form and hence solve it. 5

Derive one dimensional wave equation for a string. b

c Prove that
$$\int_{-\infty}^{\infty} f(x) \, \delta(x-t) \, dx = f(t)$$
.

Show that all the eigen values of Strum - Liouville's problem are real. 8 a

b Show that the set of functions
$$\left\{\sin\left(\frac{n\pi x}{c}\right)\right\}$$
 $n = 1, 2,$ is orthogonal in (0, c).

OR

Let $f(\theta)$ be any given continuous function of θ with period 2π . Prove that the 10 9 a

Dirichlet problem
$$u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0, \ 0 \le r < 1 \ W(1, \theta) = f(\theta), \ -\pi \le \theta \le \pi$$
 has

a solution given by Poisson integral formula.

State the necessary condition for the Validity of the Fourier series expansion of an 4 b integrable function.

Scanned by CamScanner

10

4

8

6

7

5

.

T

1