St.Philomena's College (Autonomus), Mysore PG Department of Mathematics

Question Bank (Revised Curriculum 2018 onwards)
Second Year - Fourth Semester (2018 -20 Batch)
Course Title (Paper Title): Ordinary and Partial Differential Equations
Q.P.Code-57303

Unit

Solve the IVP $y^{\prime \prime}+x y^{\prime}+x y=x+y-1$, where $x \in\left[\begin{array}{ll}0 & 1\end{array}\right]$ with the condition $y(\log 2)=\frac{1}{2}=y^{\prime}(\log 2)$

Solve the IVP $y^{\prime \prime}+x y^{\prime}+x y=x+y-1$, where $x \in\left[\begin{array}{ll}0 & 1\end{array}\right]$ with the
2
condition $y(\log 2)=2=y^{\prime}(\log 2)$
3 Solve the IVP $y^{\prime \prime}-y^{2}+6 y=0$ with $y(1)=e^{2}$ and $y^{\prime}(1)=3 e^{2}$
When does the uniqueness of the solution of an Initial Value problem fails?

Show that $V=\left\{y / y \prime \prime+P(x) y^{\prime}+Q(x) y=0\right\}$ forms a vector space over real field.

Define Wronskian of y_{1} and y_{2} where y_{1}, y_{2} are the solutiom of second
6
order linear ordinary differential equation and hence find $W\left(e^{x}, e^{-x}\right)$
7 Define trajectory with an example.
8 Comment on critical points by giving suitable example 2 m
$9 \quad$ Define stable critical point with an example.
2 m
Define a regular singular point.Determine whether $x=0$ is a regular 10 singular point of $\quad 2 x^{2} y \prime \prime+7 x(x+1) y^{\prime}-3 y=0$

Show that $\mathrm{x}=0$ is a ordinary point of $\left(x^{2}-1\right) y \prime \prime+x y^{\prime}-y=0$ but $x=1$ 11 is a regular singular point

12 Define Hermite polynomial with its Generating function.
2 m
13 Prove that $H_{n}^{\prime}(x)=2 n H_{n-1}(x)$, where $H_{n}(x)$ is Hermite polynomial
2 m
14 Show that $\left\{J_{\frac{-1}{2}}(x)\right\}^{2}+\left\{J_{\frac{1}{2}}(x)\right\}^{2}=\frac{2}{\pi x}$ 2 m

15 Show that $J_{\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \sin x$ 2 m
16 Show that $J_{-\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \cos x$ 2 m

17 Define semilinear and quasilinear partial differential equation.
2 m
Form the partial diferential equations by eliminating arbitrary constant
18 $z=a x+b y+a b$ Obtain the PDE for $z=x+a x^{2} y^{2}+b$; where ' a ' and ' b ' are arbitrary
19 constants.

20 Form the PDE by eliminating arbitrary function F for $z=x y+F\left(x^{2}+y^{2}\right) .2 \mathrm{~m}$
21 Form the PDE by eliminating arbitrary function F for $z=F\left(\frac{x y}{z}\right)$.
2 m
22 Form the PDE by eliminating arbitrary function F for $\phi(x+y, x-\sqrt{2})=0$ 2 m

23 Solve $p+q-p q=0$ by Charpit's Method 2 m

24 Find the complete integral of $p^{2}+q^{2}=x+y$ 2 m

25 Find the variables ξ and η which reduces to PDE $u_{x x}-x^{2} u_{y y}=0$.
26 Find a particular solution of $y^{\prime \prime}+4 y=\tan 2 x$. 4 m By Wronskian to prove that two solutions of second order linear homo-

27 geneous equation are linearly independent if they have common zero in 4 m the inteval.

Show that $x^{2} y^{\prime \prime}+x y \prime+\left(x^{2}-p^{2}\right) y=0$; where $x \neq 0$ has infinitely many
28 zeroes.

Comment on the nature of the critical points by its eigen value of a
30 dynamical system with two constraints.

31 Prove that $2 n J_{n}(x)=x J_{n-1}(x)+J_{n+1}(x)$
4 m
32 Prove that $x J_{n}^{\prime}=-n J_{n}(x)+x J_{n-1}(x)$ 4 m

33 Solve $(z-y) p+(x-z) q=y-x$. 4 m

34 Prove that $x J_{n}^{\prime}(x)=n J_{n}(x)-x J_{(n+1)}(x)$ 5 m

35 Solve $\left(\frac{y^{2} z}{x}\right) p+x z q=y^{2}$ 5 m

36 Solve $p+3 q=5 z+\tan (y-3 x)$ 5 m Find the which intersects the surfaces of the system $z(x+y)=c(3 z+1)$
37 orthogonally and which passes through the the circle $x^{2}+y^{2}=1 ; z=1$. Find the surface which is orthogonal to the parameter system $z=$
$38 c x y\left(x^{2}+y^{2}\right)$ and which passes through the hyperbola $x^{2}-y^{2}=a^{2}$ and 5 m $z=0$.

Explain the method to find the second solution using a known solution
for second order linear homogeneous differential equation.
40 Find the particular solution of $y^{\prime \prime}+y=\cot ^{2} x$ and $y^{\prime \prime}+y=\cot 2 x$
6 m
41 Show the critical points of $\frac{d x}{d t}=x$ and $\frac{d y}{d t}=-y$ is a saddle point $\quad 6 \mathrm{~m}$
42 Prove the following $P_{n}(x)=P_{n+1}^{\prime}(x)-2 x P_{n}^{\prime}(x)+P_{n-1}^{\prime}(x) \quad 6 \mathrm{~m}$
Comment on classification of PDE in the variables and hence classify the
43
$6 m$ $\operatorname{PDE} u_{x x}+u_{y y}+u_{z z}=0$.

Define Wronskian and show that wronskian is identicaly zero or never
44 zero.

Show that the solution $y_{1}(x), y_{2}(x)$ of $y^{\prime \prime}+p(x) y^{\prime}+Q(x) y=0$ are
45 linearly dependent if and only if $W\left(y_{1}, y_{2}\right)=0$

Verify that $y=e^{x}$ is a known solution of $x y^{\prime \prime}-(2 x+1) y \prime+(x+1) y=$
46 0 .Hence find the general solution.

47 Find the general solution of $\left(x^{2}-1\right) y^{\prime \prime}-2 x y^{\prime}+2 y=\left(x^{2}-1\right)^{2}$
7 m
48 State and prove the Rodrigue's formula for Legendre Polynomial
49 Show that $\int_{-1}^{1} P_{m}(x) P_{n}(x)=\left\{\begin{array}{cc}\frac{2}{2 n+1}, & \text { if } m=n \\ 0, & \text { otherwise }\end{array}\right.$
50 Find the complete integral of $p x+q y=p q ; q \neq 0$. (7m)
51 Solve by Charpit's method $p x+q y=p q$; where $p=\frac{\partial z}{\partial x} \quad q=\frac{\partial z}{\partial y}$.

Use the Adomian Method to solve IVP $u_{t t}=u_{x x}, 0<x<\pi ; t>0$

52 Boundary Condition $u(0, t)=0 u(\pi, t)=0$ initial conditions $u(x, 0)=7 \mathrm{~m}$ $0, u_{t}(x, 0)=\sin x ;$

Use the Decomposition method and the noise term phenomenon to
53 solve the following inhomogeneous PDE $u_{x}+u_{y}=(1+x) e^{y} ; u(0, y)=7 \mathrm{~m}$ $0, u(x, 0)=x$

Solve $u_{t t}-c^{2} u_{x x}=0$ with $u(x, 0)=f(x) ; u_{t}(x, 0)=g(x) ;-\infty<x<$ 54 $\infty ; t>0$.

Solve the following homogeneous heat equation by Adomian method,
55 PDE $u_{t}=u_{x x} ; 0<x<\pi, t>0$ Boundary Condition $u(0, t)=0 ; t \geq$ 7 m $0 ; u(\pi, t)=0 ; t \geq 0$; Initial Condition $u(x, 0)=\sin x$

Use modified decomposition method to solve $u_{x}+u_{y}=(1+x) e^{y} ; u(0, y)=$
56 $0 ; u(x, 0)=x$

Use the modified decomposition method to solve Ricatti's Differential 57 Equation $y^{\prime}=A x^{2}+y^{2} ; \quad y(0)=0$

Use the Adomian Decomposition method to solve IVP PDE ; $u_{t}=$
$58 u_{x x}, 0<x<\pi ; t>0$ Boundary Condition $u(0, t)=e^{-t} ; t \geq 0 u(\pi, t)=7 \mathrm{~m}$ $\pi-e^{-t} ; t \geq 0$ initial conditions $u(x, 0)=x+\cos x ;$

Show that $y_{1}(x)=\frac{\cos x}{\sqrt{x}}$ is a known solution of $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0$.

59 Hence solve the Initial value problem $y \prime \prime+\frac{1}{x} y^{\prime}+\left(1-\frac{1}{4 x^{2}}\right) y=0 ; x \neq 8 \mathrm{~m}$ 0 with the condition $y\left(\frac{\pi}{2}\right)=\frac{2}{\pi}$ and $y^{\prime}\left(\frac{\pi}{2}\right)=-\frac{2}{\pi}\left(1+\frac{1}{\pi}\right)$.

Explain the method of finding the solution by transforming a linear or-
60 dinary differential equations into normal form

61 Explain the power series method for Bessels diferential equation 8 m

62 Reduce $e^{2 x} u_{x x}+u_{y y}+2 e^{x+y} u_{x y}+e^{2 y} u_{y y}=c$ into canonical form. 8 m

63 State and prove Strum's separation theorem 10 m If $u(x)$ is a nontrival solution of $u^{\prime \prime}+q(x) u=0, \forall x>0$ and $\int_{1}^{\infty} q(x) d x=$
64 ∞; then prove that $\mathrm{q}(\mathrm{x})$ has infinitely many zeroes on positive x - axis State and prove Picard's theorem for existence and uniqueness of initial 65 value problem.

Explain the general method to find the power series solution of second
66 order linear differential equation and hence solve the Airy's equation 14 m $y \prime \prime+x y=0$

St. Philomena's College (Autonomous) Mysore

II Semester M.Sc. C3 Component - Final Examination April - 2017

Subject: MATHEMATICS

Title: ORDINARY AND PARTIAL DIFFERENTIAL EQUATIONS (SC)
Time: 3 Hours
Max Marks: 70

PART -A

Answer the following questions:

1. a. Define a Stable Critical point with an example.
b. When do the given two solutions are linearly dependent?
c. If $z=f\left(x^{2}-y\right)+g\left(x^{2}-y\right)$, show that $\frac{\partial^{2} z}{\partial x^{2}}-4 x^{2} \frac{\partial^{2} z}{\partial y^{2}}=\frac{1}{x} \frac{\partial z}{\partial x}$.
d. Show that $y_{1}=\cos x+\sin x, y_{2}=\cos x-\sin x$ are two linearly independent solution of $y^{11}+y=0$.
e. Write the normal form of a Legendre polynomial and find $q(x)$ in it.
f. State Strum Comparison theorem.
g. Write the Parseval's equation.
PART -B

Answer the following:

2. State and prove Picard's theorem for existence and uniqueness of solution.

OR
3. a State and prove Sturm's Separation theorem. 8
b Write and general solution of initial Value problem $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=0, y(0)=1$ and $y^{\prime}(0)=2$.
4. a Find the general solution of the Gauss hypergeometric equation
$x(1-x) y^{\prime \prime}+[c-(a+b+1) x] y^{\prime}-a b y=0$ in the form of Frobenious series solution valid in $0<x<1$.
b Show that Zero's of $J_{n}(x)$ are simple.

> OR
$5 \quad$ a Show that $(n+1) P_{n+1}(x)=(2 n+1) x P_{n}(x)-n P_{n-1}(x)$ and

$$
\begin{equation*}
P_{n}(x)=P_{n+1}^{1}(x)-2 x P_{n}^{1}(x)+P_{n-1}^{1}(x) \tag{6}
\end{equation*}
$$

b Show that $\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=\left\{\begin{array}{cc}0 & m \neq n \\ \frac{1}{2 n+1} & m=n\end{array}\right.$.
Describe the Green's functions method for solving a standard Strum - Liouville problem.
b Solve by Greens function method $y^{\prime \prime}+y=f(x), x \in\left[0, \frac{\pi}{2}\right], y^{\prime}(0)=0, y^{\prime}\left(\frac{\pi}{2}\right)=0$.

OR

7 a Reduce $\frac{\partial^{2} z}{\partial x^{2}}+2 \frac{\partial^{2} z}{\partial x \partial y}+\frac{\partial^{2} z}{\partial y^{2}}=0$ to Cannonical form and hence solve it.
b Derive one dimensional wave equation for a string.
c Prove that $\int_{-\infty}^{\infty} f(x) \delta(x-t) d x=f(t)$.
8 a Show that all the eigen values of Strum - Liouville's problem are real.
Show that the set of functions $\left\{\sin \left(\frac{n \pi x}{c}\right)\right\} n=1,2, \ldots .$. is orthogonal in $(0, \mathrm{c})$.

OR

9 a Let $f(\theta)$ be any given continuous function of θ with period 2π. Prove that the Dirichlet problem $u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0,0 \leq r<1 W(1, \theta)=f(\theta),-\pi \leq \theta \leq \pi$ has a solution given by Poisson integral formula.
b State the necessary condition for the Validity of the Fourier series expansion of an integrable function.

