St.Philomena's College (Autonomus), Mysore

PG Department of Mathematics

Question Bank (Revised Curriculum 2018 onwards)

Second Year - Fourth Semester (2018 - 20 Batch)

Course Title (Paper Title): Theory Of Numbers Q.P.Code-57304

Unit	S.No	Question	Aarks
1	1	If P_n is the n^{th} prime, then prove that $P_n \leq 2^{2^{n-1}}$	$2\mathrm{m}$
1	2	Prove that the only prime p for which $3p + 1$ is a perfect square is $p = 5$	5. 2m
1	3	Prove that the only prime of the form $n^3 - 1$ is 7.	$2\mathrm{m}$
1	4	State Dirichlet's theorem an hence deduce that there are infinitely many	y Dros
T		primes whose last three digits are 999.	2111
1	5	If P_n is the n^{th} prime, then prove that $N = P_1 \cdot P_2 \cdots P_n + 1$ is never a	a 2m
I		perfect square for any n.	2111
1	6	If $n > 2$, then prove that there exist a prime p satisfying $n .$	$2\mathrm{m}$
1	7	If $p \neq 5$ is an odd prime, then prove that $p^2 - 1$ or $p^2 + 1$ is divisible by	y 9
1	1	10.	2111
1	8	For $n \geq 2$, show that the last digit of F_n is 7.	$2\mathrm{m}$
1	9	Find the successor of $\frac{2}{111}$ in \mathfrak{F}_{257} .	$2\mathrm{m}$
2	10	Show that $\sum_{\frac{p}{q} \in \mathfrak{F}_n} \frac{p}{q} = \frac{ \mathfrak{F}_n }{2}.$	$2\mathrm{m}$
2	11	Prove that $F_0 \cdot F_1 \cdots F_{n-1} = F_n - 2$.	$2\mathrm{m}$

2	12	Find the number of elements in \mathfrak{F}_n .	2m
2	13	Show that Fermat Number F_n for $n = 5$ is composite.	2m
2	14	Define Farey sequence.	2m
2	15	Show that $\sqrt[m]{N}$ is irrational unless $N = n^m$ for any n.	2m
2	16	Show that $\varphi(n) = \sum_{d n} \mu(d) \cdot \frac{n}{d}$	2m
2	17	Define an Arithmetical function with an example.	2m
2	18	State Mobius inversion Formula.	$2\mathrm{m}$
2	19	Define Dirichlet product of two arithematical functions.	2m
9	90	Show that Λ is neither a multiplicative function, nor a completely mul-	0
2	20	tiplicative function.	Zm
3	21	Define a multiplicative function with an example.	2m
2	00	Given two completely multiplicative functions f and g , show that $f = g$	2m
0	LΔ.	if and only if $f_p(x) = g_p(x)$ for all primes p .	
3	23	Define Bell series.	2m
3	24	Show that $\sum_{d n} \Lambda(d) = \log n$	2m
3	25	Define Mangoldt function.	$2\mathrm{m}$
2	96	If a'_n is the n^{th} complete quotient of a continued fraction $[a_0, a_1, a_2, \cdots, a_N]$,	9
0	20	then find the integral part of a'_{N-1} .	2111
n	07	If $\frac{p_n}{q_n}, \frac{p_{n-1}}{q_{n-1}}$ are the n^{th} and $(n-1)^{th}$ convergents of a continued fraction	0
ა	27	$[a_0, a_1, a_2, \cdots, a_N]$, then show that $\frac{p_n}{q_n} - \frac{p_{n-1}}{q_{n-1}} = \frac{(-1)^{n-1}}{q_n \cdot q_{n-1}} \mathbb{F}$	2m

3	28	Express $\frac{29}{10}$ as a finite simple continued fraction.	$2\mathrm{m}$
4	20	If $[a_0, a_1, a_2, \dots, a_N]$ is a finite simple continued fraction, then show that	9 m
4	29	$q_n \ge q_{n-1}$ for $n \ge 1$.	2111
4	30	If $[a_0, a_1, a_2, \dots, a_N]$ is a finite simple continued fraction, then show that	2m
4		$q_n \ge n \text{ for } n \ge 1.$	
4	01	If $\frac{p_n}{q_n}$ is the n^{th} convergent of a finite simple continued fraction, then show	0
4	31	that $\frac{p_n}{q_n}$ is an irreducible rational number.	2m
4	32	Obtain the continued fraction for $x = \frac{1+\sqrt{5}}{2}$.	$2\mathrm{m}$
4	33	If $[a_0; a_1, a_2, a_3, \cdots]$ is an infinite simple continued fraction such that it	2m
4		converges to x , then show that x is an irrational number.	
4	34	Define equivalent numbers. Show that any two integers are equivalent.	2m
4	35	Show that the relation $\xi \sim \eta$ is an equivalence relation.	$2\mathrm{m}$
4	36	Define periodic continued fraction.	$2\mathrm{m}$
	07	If p is an odd prime, $a, b \in \mathbb{Z}^+$ such that $(a, p) = (b, p) = (a, b) = 1$ and	0
1	37	$p a^2 + b^2$, then show that $p \equiv 1 \pmod{4}$.	3m
	20	Find the values of $n \ge 1$ for which is $n! + (n+1)! + (n+2)!$ a perfect	0
1	38	square.	зm
1	39	Prove that $\frac{1}{P_1} + \frac{1}{P_2} + \cdots + \frac{1}{P_n}$ is never an integer.	4m
1	40	Show that $(F_n, F_m) = 1$ for $n \neq m$.	4m
4	41	Show that $\sqrt{2}$ is never equivalent to $\sqrt{3}$.	4m

1 42Show that there are infinitely many primes of the form 6n + 5. 7mIf P_n is the n^{th} prime, then prove that $P_n \sim n \log_e n$ for large n. 1 437mIf $\varphi(n)$ is Euler's function, then show that $\sum_{d|n} \varphi(d) = n$ 2 $7\mathrm{m}$ 44 Show that $\varphi(n) = n \sum_{d \mid n} \frac{\mu(d)}{d}$. 452 $7\mathrm{m}$ For any two intgers m, n, show that $\varphi(m \cdot n) = \varphi(m) \cdot \varphi(n) \cdot \frac{d}{\varphi(d)}$, where 462 $7\mathrm{m}$ d = (m, n).247Show that if a|b then $\varphi(a)|\varphi(b)$. $7\mathrm{m}$ If both g and f * g are multiplicative, then show that f is also multi-248 $7\mathrm{m}$ plicative. If f is multiplicative, then show that f is completely multiplicative if and 2497monly if $f^{-1}(n) = \mu(n) \cdot f(n) \quad \forall \quad n \ge 1.$ Show that $\sum_{d|n} \Lambda(d) = \log n$ for $n \ge 1$. 50 2 $7\mathrm{m}$ Show that for $n \ge 1$, $\Lambda(n) = \sum_{d|n} \mu(d) \cdot \log \frac{n}{d} = -\sum_{d|n} \mu(d) \cdot \log d$. 251 $7\mathrm{m}$ Prove that every odd convergent is greater than any even convergent in 52 $7\mathrm{m}$ 3 a continued fraction. . If $[a_0, a_1, a_2, \dots, a_N]$ is a finite continued fraction, then show that $p_n =$ 533 $7\mathrm{m}$ $a_n p_{n-1} + p_{n-2}, \quad q_n = a_n q_{n-1} + q_{n-2}, \quad n \ge 2.$ Show that the even convergents increase strictly with n while the odd 3 54 $7\mathrm{m}$ convergents decrease strictly in a continued fraction.

3	55	Find the value of the continued fraction $[-2; 1, 2, 5, 7, 4, 1, 6]$	$7\mathrm{m}$
		If $[a_0, a_1, a_2, \dots, a_N] = [b_0, b_1, b_2, \dots, b_M]$ and $a_N > 1, b_N > 1$ then prove	
		that N=M and $a_i = b_i \forall i, \ 0 \le i \le N.$	
3	56	Show that if x is representable by a simple continued fraction with an	$7\mathrm{m}$
		odd (even) number of convergents, then it is also representable by one	
		with an even (odd) number.	
3	57	Solve the linear diophantine equation $172x + 50y = 500$.	$7\mathrm{m}$
0	F 0	Given any rational number , show that it can be expressed as a finite	-
3	58	simple continued fraction.	'n
3	59	Show that any infinite simple continued fraction $[a_0, a_1, a_2, \cdots]$ converges.	$7\mathrm{m}$
3	60	If $[a_0, a_1, a_2, \dots,] = [b_0, b_1, b_2, \dots,]$ then show that $a_i = b_i \ \forall i, \ i = 0, 1, 2, \dots$	$7\mathrm{m}$
4	61	Show that given any irrational number ξ has an infinite simple continued	-
4	61	fraction reprezentation.	7 m
4	62	Show that any two rationals are equivalent.	$7\mathrm{m}$
		Show that any two irrational numbers ξ and η are equivalent if and only	
4	63	if $\xi = [a_0, a_1, a_2, \dots, a_m, c_0, c_1, c_2, \dots], \eta = [b_0, b_1, b_2, \dots, b_n, c_0, c_1, c_2, \dots]$, the	7
4		sequence of quotients in ξ after the m^{th} being the same as the sequence	7 m
		in η after the n^{th} .	
4	64	Show that a periodic continued fraction is a quadratic surd.	$7\mathrm{m}$
1	65	Show that $\sum_{i=1}^{\infty} \frac{1}{P_i}$ is a divergent series, where P_i is the i^{th} prime.	8m

66 1 $8 \mathrm{m}$ for $x \ge 2$. Show that e^y is irrational for $y \neq 0, y \in \mathbb{Q}$. 267 $8 \mathrm{m}$ If f is an arithmetical function with $f(1) \neq 0$, then show that there is a unique arithmetical function f^{-1} called the Dirichlet inverse of f such 68 8m2that $f * f^{-1} = f^{-1} * f = I$ where $I(n) = \left[\frac{1}{n}\right] = \begin{cases} 1, & \text{if } n = 1 \\ 0 & \text{if } n > 1 \end{cases}$. 69 State and prove Pepin's test. 10m 1 Show that the continued fraction which represents a quadratic surd is 4 7010m periodic.

If $\pi(x)$ is the prime counting function, then show that $\log \log x \leq \pi(x)$

6

Q.P Code:50633

Model Question Paper

St. Philomena's College (Autonomous) Mysore III Semester M.Sc. Make-up Examination August - 2019 Subject: MATHEMATICS Title: Theory of Numbers

ne: 3 Hours

ruction to the Candidates: Answer All the questions. All questions carry equal marks.

PART –A

Answer the following:

- **a.** If P_n is $n^{\prime\prime}$ prime then show that $\frac{1}{p_1} + \frac{1}{p_2} + \dots + \frac{1}{p_n}$ is never an integer.
- **b.** Show that $\frac{\log 2}{\log 10}$ is an irrational number.
- c. Show that $\phi(n)$ is even for $n \ge 3$.
- **d.** Prove that there are infinitely many integer 'n' such that $\phi(n) \neq 3k$.
- c. Show that 210 (211 1) is not a perfect number.
- **f.** If $n = 2^{K-1}(2^K 1)$, $K \ge 2$ in a perfect number prove that $\pi d = n^K$.
- 8. Show that any two rationals are equivalent.

PART - B

		State and prove fundamental theorem of Arithmetic.	08
	b.	Show that there are infinitely many primes of the form $8n + 5$.	06
I		OR	
			08
	8.	Show that π^2 is irrational.	06
	b.	Show that the series $\sum_{p \text{ prime}} \frac{1}{P}$ is divergent.	
		If $n \ge 1$, show that $\sum \mu(d) = \begin{cases} 1 & \text{in } n = 1 \\ 0 & \text{or } n < 1 \end{cases}$	04
		$\sum_{d \in n} f(d) = \int_{0}^{\infty} f(d) f(d) = \int_{$	

b. If $n \ge 1$ then prove that $\sum_{d \in n} \phi(d) = n$. 04

c. Show that
$$\frac{\phi(n)}{n} = \sum_{d \in \mathbb{N}} \frac{\mu(d)}{d}$$
, where $n \in \mathbb{Z}^*$.

OR

Max Marks: 70

7×2=14

- -

PTO

Scanned by CamScanner

- 5. a. Show that Dirchlet product of two multiplicative function is multiplicative.
 - b. If both f and f * g are multiplicative then prove that f is also multiplicative.
- a. If 2^k -1 is prime (K > 1) then prove that n = 2^{k-1}(2^k 1) is perfect and every even perfect number is or this form. How about the converse? Justify.
 - b. For an even perfect number n > 6, show that the sum of digits of n is congruent to 1 mod 9.

OR

- 7. a. Show that $U_{mn} = U_{m-1}U_n + U_m U_{n+1}$ for $m \ge 2, n \ge 1$.
 - b. Prove that $U_1^2 + U_2^2 + \dots + U_n^2 = U_n U_{n+1}$.
 - c. Show that a perfect square cannot be a perfect number.
- a. Prove that every odd convergent of a continued fraction is greater than any even convergent.
 - b. Prove that every infinite simple continued fraction converges.

OR

- a. Show that every irrational number can be expressed uniquely as an infinite simple continued fraction.
 - b. Prove that two rational numbers ξ and η are equivalent if and only if $\xi = [a_0, a_1, a_2, \dots, a_m, c_0, c_1, c_2, \dots, \dots]$ and $\eta = [b_0, b_1, b_2, \dots, b_{\nu}, c_0, c_1, c_2, \dots, \dots]$