St.Philomena's College (Autonomus), Mysore

PG Department of Mathematics

Question Bank (Revised Curriculum 2018 onwards)

Second Year - Fourth Semester (2018 - 20 Batch)

Course Title (Paper Title): Topology-II Q.P.Code-57302

Unit	S.No	Question	larks
1	1	Define First countable space with an example.	2m
1	2	Define Second countable space with an example.	$2\mathrm{m}$
1	3	Define Lindelof space with an example.	$2\mathrm{m}$
1	4	Define Normal space with an example.	2m
1	5	Is the product of normal spaces normal? Justify.	$2\mathrm{m}$
1	6	Is the product of Lindelof spaces a Lindelof space. Justify.	$2\mathrm{m}$
1	7	Is every first countable space second countable space? Justify.	$2\mathrm{m}$
		Consider the normal space \mathbb{R} and the closed subsets $A = [-2, -1]$ and	
1	8	$B = [2,3]$ of \mathbb{R} . Give a Urysohn function $f : \mathbb{R} \to [0,1]$ such that	2m
		$f(A) = \{0\}$ and $f(B) = \{1\}.$	
1	9	State Tietze's extension theorem.	2m
2	10	Give an example of a completely regular space that is not normal.	2m
2	11	Give an example of a completely regular space that is not normal.	2m
1	12	State the Imbedding theorem.	2m

2	13	Define an m-manifold.	2m
2	14	State Tychonoff theorem.	2m
2	15	Give an example of a collection of subsets of $\mathbb R$ that is locally finite.	$2\mathrm{m}$
0	10	When do you say that a collection B of subsets of X is countably locally	0.000
2	10	finite open refinement of a collection of subsets of X?	2111
3	17	Is a paracompact space always compact? Justify.	2m
3	18	Define a paracompact space.	2m
3	19	Is every subspace of a paracompact space paracompact? Justify.	2m
3	20	Define a covering map.	2m
4	21	Define a simply connected space.	2m
4	22	Give a covering map and the covering space of S^1 , the unit circle in t	0
4		plane \mathbb{R}^2 .	∠III
4	23	Give two paths in $\mathbb{R}^2 - \{0\}$ having the same initial points which are not	e not 2m
4		path homotopic.	
4	24	Define essential and inessential maps.	2m
4	25	State Fundamental Theorem of Algebra.	2m
1	26	Show that a Hausdorff space need not be regular.	$6\mathrm{m}$
0	07	Prove that a compact m - manifold X can be imbedded in \mathbb{R}^N for some	$6\mathrm{m}$
2	21	$N \in \mathbb{Z}^+.$	
2	28	Show that a completely regular space is regular.	$6\mathrm{m}$

3	29	Prove that every metrizable space has a countably locally finite basis for its topology.	6m
3	30	Prove that \mathbb{R} is paracompact.	6m
4	31	Prove that the relation " $f \simeq_p g$ " is an equivalence relation.	$6\mathrm{m}$
4	32	Prove that the map $p : \mathbb{R} \to S^1$ given by the equation $p(x) = (\cos 2\pi x, \sin 2\pi x)$ is a covering map.	6m
1	33	Let X be first countable, $A \subset X$ and $x \in X$. Then prove that $x \in \overline{A}$ if and only if there is a sequence of points of A converging to x.	7m
1	34	Show that if X is Lindelof and Y is compact then $X \times Y$ is Lindelof.	$7\mathrm{m}$
1	35	Define a normal space. Prove that a regular space with a countable basis is normal.	7m
1	36	Prove that every compact Hausdorff space is normal.	$7\mathrm{m}$
1	37	Prove that $\mathbb{R}_l \times \mathbb{R}_l$ is not Lindelof.	$7\mathrm{m}$
1	38	Show that a subspace of a separable space need not be separable.	$7\mathrm{m}$
2	39	Prove that a product of completely regular spaces is completely regular.	$7\mathrm{m}$
2	40	Prove that Tietze's extension theorem implies Urysohn's lemma.	$7\mathrm{m}$
4	41	Define an inessential map. Let $h:X\to Y$ be an inessential map. Prove that h is the zero homomorphism	7m
4	42	State and prove fundamental theorem of algebra	$7\mathrm{m}$

		Define a regular space. Let X be a topological space in which one point		
1	12	sets are closed. Prove that X is regular if and only if given a point x of	8m	
1	40	X and a neighbourhood U of x, there exist a neighbourhood V of x such	0111	
		that $\overline{V} \subset U$.		
		Let A and B be closed disjoint subsets of the normal space X. Prove that		
2	44	there exists a continuous function $f: X \to [0,1]$ such that $f^{-\prime}(\{0\}) = A$	8m	
		and $f^{-\prime}(B) = \{1\}$ if and only if A is a G_{δ} set in X.		
2	45	State and prove Urysohn's metrization theorem.	8m	
3	46	Prove that every paracompact space is normal.	8m	
		Let X be a regular space. If every open covering of X has a refinement		
2	47	that is an open covering of X and is countably locally finite, then show	8m	
0	41	that the open covering has a refinement that covers X and is locally		
		finite.		
4	18	If X is path connected and $x_0, x_1 \in X$, prove that $\pi_1(X, x_0)$ is isomorphic	9 m	
4	40	to $\pi_1(X, x_1)$.	om	
4	49	Prove that the fundamental group of the circle is infinite cyclic.	8m	
1	50	Prove that \mathbb{R}_{ℓ} is a first countable, Lindeloff, separable space but not a	1 <i>4</i> m	
1	50	second countable space.	1,4111	
2	51	State and prove Urysohn's lemma.	14m	
2	52	State and prove Tietze's extension theorem.	14m	

53 State and prove Tychonoff's theorem.

14m

3

Model Question Paper Q.P Code: 16MSMTDH02 St. Philomena's College (Autonomous) Mysore IV Semester M.Sc. Mathematics Final Examination : April 2018 Subject: MATHEMATICS Title: Topology - II

Time: 3 Hours

Max. Marks: 70

7×2=14

07

Instruction to the Candidates: Answer All the Questions:

$\mathbf{PART} - \mathbf{A}$

Answer the following:

- 1. a. Show that R_i is not second countable.
 - b. If X_{α} , for each α , is nonempty and πX_{α} is Hausdorff, show that each X_{α}

is Hausdorff.

- c. If in a topological space X, two disjoint closed sets A and B are separated by a continuous function, show that there exist disjoint open sets containing A and B.
- d. Show that the Tietze extensiion theorem implies the Urysohn lemma.
- e. If A is a locally finite collection of subsets of a space X, prove that $\overline{\bigcup_{A \in A}} = \bigcup_{A \in A} \overline{A}$.
- f. Show that every regular Lindelof space is paracompact.
- g. If $h, h': X \to Y$ are homotopic and $k, k': Y \to Z$ are homotopic, then show that

 $k \circ h$ and $k' \circ h'$ are homotopic.

PART – B

2.	a.	Define first and second countable spaces. Let X be first countable, $A \subset X$ and $x \in X$.	07
	b.	Prove that $x \in \overline{A}$ is and only if there is a sequence of points of A converging to x. Prove that every compact metrizable space X is second countable.	07
		OR In How should	07
3.	a.	Define regular and normal spaces. Prove that every normal space is regular. How about	-
		the converse? Justify.	07
	b.	Prove that every compact Hausdorff space is normal.	рто

			14	
4.		State and prove the Urysohn lemma. OR	07	
5.	a. b.	State and prove the Urysohn metrization theorem. If X is a compact m-manifold, then prove that X can be imbedded in \mathbb{R}^N for some	07	т
6.	a.	positive integer N . If X is metrizable, prove that every open covering of X has a countably locally finite	10	I
	b.	open refinement that covers X . Prove that every closed subspace of a paracompact space is paracompact. OR	04	
7. 8.	a.	Prove that every metrizable space is paracompact. Let the operation '*' on path – homotopy classes be defined by: [f] * [g] = [f * g], where $f(1) = g(0)$.	14 08	
	b.	Prove that the operation '*' is well-defined and associative. Further show that there If X is path connected and $x_0, x_1 \in X$, prove that $\pi_1(X, x_0)$ is isomorphic to	06	
9.	a. h	$\pi_1(X, x_1)$. Prove that the fundamental group of S^1 is infinite cyclic. If $h: X \to Y$ is inessential, prove that h_* is the zero homomorphism.	10 04	
