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Unit S.No Question Marks
1 1 Define First countable space with an example. 2m
1 2 Define Second countable space with an example. 2m
1 3 Define Lindelof space with an example. 2m
1 4 Define Normal space with an example. 2m
1 5  Is the product of normal spaces normal? Justify. 2m
1 6  Is the product of Lindelof spaces a Lindelof space. Justify. 2m
1 7  Is every first countable space second countable space? Justify. 2m
Consider the normal space R and the closed subsets A = [—2, —1] and
1 8 B = [2,3] of R. Give a Urysohn function f : R — [0,1] such that 2m

f(A) = {0} and f(B) = {1}.

1 9  State Tietze’s extension theorem. 2m
2 10  Give an example of a completely regular space that is not normal. 2m
2 11  Give an example of a completely regular space that is not normal. 2m
1 12 State the Imbedding theorem. 2m
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Define an m-manifold.

State Tychonoff theorem.

Give an example of a collection of subsets of R that is locally finite.
When do you say that a collection B of subsets of X is countably locally
finite open refinement of a collection of subsets of X?

Is a paracompact space always compact? Justify.

Define a paracompact space.

Is every subspace of a paracompact space paracompact? Justify.

Define a covering map.

Define a simply connected space.

Give a covering map and the covering space of S!, the unit circle in the
plane R?.

Give two paths in R? — {0} having the same initial points which are not
path homotopic.

Define essential and inessential maps.

State Fundamental Theorem of Algebra.

Show that a Hausdorff space need not be regular.

Prove that a compact m- manifold X can be imbedded in RY for some
N eZ*.

Show that a completely regular space is regular..
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Prove that every metrizable space has a countably locally finite basis for
its topology.

Prove that R is paracompact.

Prove that the relation “f ~, ¢g” is an equivalence relation.

Prove that the map p : R — S' given by the equation p(x) =
(cos 2wz, sin 27x) is a covering map.

Let X be first countable, A C X and # € X. Then prove that z € A if
and only if there is a sequence of points of A converging to x.

Show that if X is Lindelof and Y is compact then X x Y is Lindelof.
Define a normal space. Prove that a regular space with a countable basis
is normal.

Prove that every compact Hausdorff space is normal.

Prove that R; x R; is not Lindelof.

Show that a subspace of a separable space need not be separable.

Prove that a product of completely regular spaces is completely regular.
Prove that Tietze’s extension theorem implies Urysohn’s lemma.

Define an inessential map. Let h: X — Y be an inessential map. Prove
that h is the zero homomorphism

State and prove fundamental theorem of algebra
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Define a regular space. Let X be a topological space in which one point
sets are closed. Prove that X is regular if and only if given a point x of
X and a neighbourhood U of x, there exist a neighbourhood V of x such
that V C U.

Let A and B be closed disjoint subsets of the normal space X. Prove that
there exists a continuous function f : X — [0,1] such that f~'({0}) = A
and f~/(B) = {1} if and only if A is a Gsset in X.

State and prove Urysohn’s metrization theorem.

Prove that every paracompact space is normal.

Let X be a regular space. If every open covering of X has a refinement
that is an open covering of X and is countably locally finite, then show
that the open covering has a refinement that covers X and is locally
finite.

If X is path connected and xg, z; € X, prove that m (X, x¢) is isomorphic
to m (X, x1).

Prove that the fundamental group of the circle is infinite cyclic.

Prove that R, is a first countable, Lindeloff, separable space but not a
second countable space.

State and prove Urysohn’s lemma.

State and prove Tietze’s extension theorem.
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53 State and prove Tychonoft’s theorem. 14m
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PART - A

Answer the following: Tx2=14
Show that R, is not second countable.

If X, for each a, is nonempty and 7 X, is Hausdorff, show that each X,

is Hausdorff.
If in a topological space X, two disjoint closed sets 4 and B are separated by a continuous

function, show that there exist disjoint open sets containing 4 and B.

4. Show that the Tietze extensiion theorem implies the Urysohn lemma.

1.- £-24- ~ollection of subsets of a space X, prove that U A= UAd.
AeA AeA

1 1
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f  Show that every regular Lindelof space is paracompact.

If h, b : X — Y are homotopic and k, k' :Y — Z are homotopic, then show that

g
koh and k' o h' are homotopic.
PART -B
X. 07
a. Define first and second countable spaces. Let X be first countable, 4= X and x €
i ing to x.
Prove that x € A is and only if there is a sequence of points :32 feconvergmg 0x -
b. Prove that every compact metrizable space X1 second countable.
" How about 07
i . How abou
2. Define regular and normal spaces. Prove that every normal space is regular. ¢
the converse? Justify. | 1 o7
b. Prove that every compact Hausdorff space is norma:. T
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State and prove the Urysohn lemma.
OR
07

ysohn metrization theorem.
07

Xcan be imbedded in RY for some

State and prove the Ur

anifold, then prove that
10

§
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b. [f.Yisa compact m-m
y locally finite

e integer V. :
very open covering of X has a countabl

positiv
ble, prove that €

a. If Xis metriza
open refinement that covers X.
b. Prove that every closed subspace of a paracompact space is paracompact.
OR
14

Prove that every metrizable space is paracompact.

Let the operation *' on path — homotopy classes be defined by: 08
[f]*[g] = [f * &), where f (1) =g (0)-

Prove that the operation '*'is well-defined and associative. Further show that there

dand x,, x; €X, prm-/e: that 7,(X, x,

) is isomorphic to 06

b. IfXis path connecte
7, (X, x;)-

OR

10

9. a. Prove thatthe fundamental group of S ! {s infinite cyclic.
04

b. If h: X — Y is inessential, prove that &, is the zero homomorphism.
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