St.Philomena's College (Autonomus), Mysore

PG Department of Mathematics

Question Bank (Revised Curriculum 2018 onwards)

First Year - Second Semester (2019 - 21 Batch)

Course Title (Paper Title): Real Analysis - III Q.P.Code-57102

Unit	S.No	Question	1 arks
1	1	Define point wise convergence with example.	2m
1	2	Define uniform convergence with example.	2m
1	3	Show that the sum of a series of continuous function need not be contin	- 2m
Ŧ		uous.	2111
1	4	Show that the limit function of a sequence of continuous function need	ł 2m
		not be continuous.	
1	5	Test the uniform convergence of $f_n(x) = \frac{nx}{1+n^2x^2}$; $x \in [0,1], n = 1, 2,$. 2m
1	6	Let $f_n(x) = n^2 x (1 - x^2)^n$, $0 \le x \le 1$, $n = 1, 2, 3,$ then show tha $\int_0^1 \left\{ \lim_{n \to \infty} f_n(x) \right\} dx \ne \lim_{n \to \infty} \int_0^1 f_n(x) dx.$	t 2m
_		$\int_0^1 \left\{ \lim_{n \to \infty} f_n(x) \right\} dx \neq \lim_{n \to \infty} \int_0^1 f_n(x) dx.$	
1	7	Does point wise convergence of sequence of function implies uniform con	- 2m
		vergence? Justify.	
1	8	Test the uniform convergence of $f_n(x) = \frac{x}{1+nx}$; $x \in [0,1], n = 1, 2,$	$2\mathrm{m}$
1	9	Examine the uniform convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} \sin\left(\frac{x}{n}\right)$ on a	a 2m
		bounded set E of \mathbb{R}	

		∞ ()	
1	10	Examine the uniform convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} \cos\left(\frac{x}{n}\right)$ on a bounded set E of \mathbb{R}	2m
2	11	Find the radius of convergence of $\sum_{k=1}^{\infty} 3^k x^k$; $k > 0$	2m
2	12	Find the radius of convergence of $\sum_{n=0}^{k=0} \frac{x^n}{n!}$	2m
2	13	Find the radius of convergence of $\sum_{k=0}^{\infty} (3^k + 5^k) x^k$; $k > 0$	2m
2	14	Show that $\int_0^\infty \frac{\cos x}{\sqrt{1+x^2}} dx$ is absolutely convergent.	2m
2	15	For what value of c is the improper integral $\int_0^\infty e^{cx} dx$ convergent?	2m
2	16	Examine the convergence of the improper integral $\int_2^\infty \frac{x^2}{\sqrt{x^7+1}} dx, x \in$	2m
		$[2,\infty)$	
2	17	Examine the convergence of the improper integral $\int_0^\infty \frac{1}{\sqrt{1+2x^2}} dx, x \in$	2m
		$[2,\infty)$	
2	18	Examine the convergence of the improper integral $\int_{1}^{\infty} \frac{\sin(xt)}{t^2} dt$	2m
2	19	Define Gamma function and show that $\tau\left(\frac{1}{2}\right) = \sqrt{\pi}$	$2\mathrm{m}$
2	20	Show that $\tau\left(n+\frac{1}{2}\right) = \frac{(2n)!}{4^n} \frac{\sqrt{\pi}}{n!}$	2m
3	21	Define functions of several variables.	$2\mathrm{m}$
3	22	Show that continuity of f at a point need not imply the existence of	2m
		partial derivatives of f that point.	
3	23	Define homogenous function with example.	$2\mathrm{m}$
3	24	Define differentiability of a function.	$2\mathrm{m}$

3	25	If $u = x + y - 2$, $v = x - y + z$ and $w = x^2 + y^2 + z^2 - xyz$ find $J\left(\frac{u, v, w}{x, y, z}\right)$	2m
3	26	If $f_1(x,y) = e^x \cos y$ and $f_2(x,y) = e^x \sin y$, then show that $J\left(\frac{f_1,f_2}{x,y}\right)$ is	2m
		not zero at any point of \mathbb{R}^2 .	
3	27	If $x = \cos \theta \ y = \sin \theta \cos \phi \ z = -\sin \theta \sin \phi \cos \eta$ then find $J\left(\frac{x,y,z}{\theta,\phi,\eta}\right)$.	2m
3	28	Show that the function $u = x+y-z$, $v = x-y+z$ and $w = x^2+y^2+z^2-2yz$	2m
		are not independent of one another. Find a relation between them.	
3	29	Define Jacobian of functions.	2m
4	30	Express the function $f(x, y) = x^2y + 3y - 2$ in power of $(x-1)$ and $(y+2)$.	2m
4	31	Express the function $f(x, y) = x^2 + xy + y^2$ in power of $(x-1)$ and $(y-2)$.	2m
4	32	Define local maximum and local minimum	$2\mathrm{m}$
4	33	Find the rectangle of perimeter l which has the maximum area.	$2\mathrm{m}$
4	34	Find the derivative of $y = \phi(x)$ at $x = 1$ defined implicitly by the equation	2m
1	01	$x^2y^3 + 2x^2y + 3x^4 - y = 1.$	2111
4	35	Find the derivative of $y = \phi(x)$ at $x = 1$ defined implicitly by the equation	2m
		$e^{-x\cos y} + \sin y = e.$	
4	36	Show that the function relation $x + y + z - xyz = 0$ defines an implicit	2m
		function $z = \phi(x, y)$ near $(0, 0, 0)$. Hence Deduce ϕ_x and ϕ_y	
4	37	Find the partial derivatives $D_1\phi(x,y)$ and $D_2\phi(x,y)$ at $x = 1, y = -1$	2m
		defined implicitly by the equation $x^2 + y^2 + z^2 - 6 = 0$.	

1	38	Show that the series $\sum_{n=1}^{\infty} \frac{nx^2}{n^3 + x^3}$ is uniformly convergent on $[0, k]$ for $k > 0$ and deduce that $\lim_{x \to 1} \sum_{n=1}^{\infty} \frac{nx^2}{n^3 + x^3} = \sum_{n=1}^{\infty} \frac{n}{n^3 + 1}$	4m
2	39	Define Logarithmic function. Prove that i). $e^{\alpha \log x} = x^{\alpha}, \ \alpha \in Q$ ii). $\log x \to +\infty$ as $x \to +\infty$ iii). $\lim_{x \to \infty} \frac{\log x}{x^{\alpha}} = 0, \ \alpha > 0$	4m
2	40	Evaluate $\int_0^\infty e^{-xy} \frac{\sin x}{x} dx.$	4m
4	41	Express the function $f(x, y) = x^2y + 3y - 2$ in power of $(x-1)$ and $(y+2)$.	4m
4	42	Find the derivative of $y = \phi(x)$ at $x = 1$ defined implicitly by the equation $x^2y^3 + 2x^2y + 3x^4 - y = 1$	4m
4	43	Show that $f(x,y) = 2x^4 - 3x^2y + y^2$ has neither a maximum nor a minimum at $(0,0)$.	4m
1	44	If $\{f_n\}$ is a sequence of continuous function defined on E and if $\{f_n\}$ converges uniformly to f on E then prove that f is continuous on E	6m
1	45	Suppose that K is compact and i). $\{f_n\}$ is a sequence of continuous function defined on K. ii). $\{f_n\}$ converges point wise to a continuous function f on K. iii). $\{f_n(x)\} \ge \{f_{n+1}(x)\} : \forall x \in K; n = 1, 2, 3,$ then show that $\{f_n\}$ converges uniformly to f on K.	6m
1	46	Test the series $\sum_{n=1}^{\infty} \frac{x}{(n+x^2)^2}$ for uniform convergence. Also examine the series for term by term integrability.	6m
1	47	Let $f(x) = \sum_{n=1}^{\infty} \frac{x}{n(1+nx^2)^2}$, $x \ge 1$. Prove that f is differentiable and f can be obtained by differentiating the series term by term.	6m

Given a double sequence $\{a_{ij}\}, i = 1, 2, 3, \dots, j = 1, 2, 3, \dots$, suppose 48 that $\sum_{j=1}^{\infty} |a_{ij}| = b_i$ $(i = 1, 2, 3, \dots)$ and $\sum b_i$ converges. Then show 6m that $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{ij}$

56

1

State and prove Weierstrass M-test.

 $7\mathrm{m}$

2	57	If $0 < f(x) \le g(x)$ and f and g are both continuous for $a \le x < \infty$ and if $\int_a^\infty g(x)dx$ converges then show that $\int_a^\infty f(x)dx$ converges.	$7\mathrm{m}$
2	58	Prove that $\beta(x, y) = \frac{\tau(x)\tau(y)}{\tau(x+y)}$ where $x > 0, y > 0$.	$7\mathrm{m}$
1	59	State and prove the theorem on uniform convergence and continuity.	8m
1	60	Prove the existence of a real continuous function on the real line which is nowhere differentiable.	8m
1	61	State and prove the theorem on uniform convergence and integration.	$8\mathrm{m}$
1	62	State and prove the theorem on uniform convergence and differentiation for sequence of functions.	8m
2	63	Define the exponential function e^x and prove that i). $e^x e^y = e^{x+y}$ ii). $(e^x)' = e^x$ iii). e^x is strictly increasing iv). $\lim_{x\to\infty} e^{-x} x^n = 0$	8m
2	64	If f is continuous on $[a, \infty]$ and $\lim_{x \to \infty} x^p f(x) = A$ where $p > 1$. Then prove that $\int_0^\infty f(x) dx$ convergence absolutely.	8m
3	65	State and prove basic mean value theorem.	8m
3	66	State and prove Euler theorem for homogeneous function.	8m
3	67	State and prove Young's theorem.	$8\mathrm{m}$

converse of the theorem is true? Justify. Suppose f is continuous and has first order partial derivatives on $E \subseteq \mathbb{R}^2$. 69 8mIf f has a local maximum (or local minimum) at a point $(x_0, y_0) \in E$ then prove that $D_1 f(x_0, y_0) = 0$ and $D_2 f(x_0, y_0) = 0$. 10m 70State and prove stone-Weirstrass theorem 10m 71State and prove Abel's theorem. Let f(x,t) be defined and continuous on $a \leq t < \infty A \leq x \leq$ B. If $\int_{a}^{\infty} f(x,t)dt$ converges uniformly to F(x) on [A,B] then prove 7210m that F(x) is continuous on [A, B] and that $\int_{A}^{B} \left[\int_{a}^{\infty} f(x, t) dt \right] dx =$ $\int_{a}^{\infty} \left[\int_{A}^{B} f(x,t) dx \right] dt \ (10M)$ 10m 73State and prove Taylor's theorem for the function of two variables. 7410mState and prove Implicit function theorem. (10M)

8m

If a function $f: E \to R$ differentiable at $(x_0, y_0) \in E$, then show that

f is continuous at (x_0, y_0) and has partial derivatives at (x_0, y_0) . Is the

3

4

1

2

 $\mathbf{2}$

4

4

Suppose f is a real valued function defined on an open subset $G \subseteq \mathbb{R}^2$ has continuous partial derivatives of second order and let $(x_0, y_0) \in G$ be a critical point of f. then prove that i). if at (x_0, y_0) , $D_{11}f \cdot D_{22}f - (D_{12}f)^2 >$ 0 and $D_{11}f > 0$ or $D_{22}f > 0$ then f has a minimum at (x_0, y_0) ii). if at (x_0, y_0) , $D_{11}f \cdot D_{22}f - (D_{12}f)^2 > 0$ and $D_{11}f < 0$ or $D_{22}f < 0$ then f has a maximum at (x_0, y_0) iii). if at (x_0, y_0) , $D_{11}f \cdot D_{22}f - (D_{12}f)^2 < 0$ then (x_0, y_0) is a saddle point of f iv). if at (x_0, y_0) , $D_{11}f \cdot D_{22}f - (D_{12}f)^2 = 0$ then the theorem gives no information.

Model Question Paper

O.P Code: 16MSMTBH02

St. Philomena's College (Autonomous) Mysore 11 Semester M.Sc C3 Component Final Examination April - 2017

Subject: MATHEMATICS

Title: REAL ANALYSIS – III (HC)

Time: 3 Hours

PART-A

Answer the following questions:

- Show that the limit function of continuous function need not be continuous. 1. a.
 - Find the radius of convergence of $\sum_{k=0}^{\infty} (3^{k} + 5^{k}) x^{k}$; K > 0. b.

For what values of C is the improper integral $\int e^{cx} dx$ is convergent? c.

- Define gamma function and show that $y_2 = \sqrt{\pi}$. $F_{2} = \sqrt{\pi}$ d. Show that continuity of f at a point need not imply the existence of partial derivations of
- e. f at that point.
- Find the rectangle of perimeter l which has the maximum area. ſ.
- Show that the function u = x + y 2, v = x y + z and $w = x^2 + y^2 + z^2 2yz$ are not g. independent of are another.

PART-B

Answer the following:

State and prove Weirstran - M test for uniform convergence of sequence of function. 7 2. a If $\{fn\}$ is a sequence of continuous function defined on E and if $fn \rightarrow f$ uniformly on 7 b E, then prove that f is continuous on E. OR State and prove theorem on uniform convergence and differentiation for sequence of 8 3 a function. 6 Define the exponential function e^x and prove b a) $(e^x)^l = e^x$ b) ex is strictly increasing c) $\lim_{x \to \infty} e^{-x} x^n = 0$ PTO

Scanned by CamScanner

Max Marks: 70

7x2 = 10

4		a	If f is continuous on $[a, \infty]$ and $\lim_{x \to \infty} x^n f(x) = A$ when $n > 1$, then prove that	5
			$\int_{a}^{\infty} f(x) dx \text{ conveys absolutely.}$	
		b	If g(x) is continuous and decreasing for $a \le x < \infty$ and $\lim_{x \to \infty} g(x) = 0$, then prove that	4
			$\int_{a}^{b} g(x) \sin x dx \text{ converges.}$	
		с	If g is continuous on $a < x \le b$, $g(x) (x - a)^2$ is increasing an	5
			$a < x \le b$ and if $\lim_{x \to a^+} g(x) (x-a)^2 = 0$ then prove that $\int_a^b g(x) \sin\left(\frac{1}{x-a}\right) dx$	
			converges.	
			OR	
	5	а	Suppose $f(x, t)$ is continuous for $a \le t < \infty$, $A \le x \le B$ and $\int_{a}^{\infty} f(x, t) dt$ conveys	6
			uniformly to $F(x)$ in [A, B], then prove that $\int_{A}^{B} F(x) dx = \int_{a}^{\infty} \left[\int_{A}^{B} f(x,t) dx \right] dt.$	
		b	Prove that $\beta(x, y) = \frac{\sqrt{x} \cdot \sqrt{y}}{\sqrt{x+y}}, x, y > 0$.	4
		с	Evaluate $\int_{0}^{1} \log \sqrt{x} dx$.	4
	6	a	State and prove mean value theorem for function of two variables.	8
		b	State and prove Euler's theorem for a homogeneous function of two variables.	6
			OR	
	7	a	State and prove Young's theorem.	10
		b	If $f(x, y) = \tan^{-1}\left(\frac{x^3 + y^3}{x - y}\right)$, $x \neq y$, show that $xD_1f(x, y) + yD_2f(x, y) = \sin(2f(x, y))$.	4
	8		State and prove implicit function theorem. OR	14
	9	а	Define critical point and saddle point of a function. Examine the function	7
			$f(x, y) = y^2 + 4xy + 3x^2 + x^3$ for the extreme values.	'
		b	Suppose f is continuous and has first order partial derivations on $E \subseteq \mathbb{R}^2$. If f has a local maximum (or local minimum) at a point $x_0, y_0 \in E$, then prove that	7
			$D_1 f(x_0, y_0) = 0$ and $D_2 f(x_0, y_0) = 0$. Further, give an example of a function business	
			vanishing partial derivatives but not having a local maximum or local minimum at that point.	

Scanned by CamScanner