St.Philomena's College (Autonomus), Mysore PG Department of Mathematics

Question Bank (Revised Curriculum 2018 onwards)

First Year - Second Semester (2019 -21 Batch)
Course Title (Paper Title): Real Analysis - III Q.P.Code-57102

Unit
S.No

1 Define point wise convergence with example.
2 Define uniform convergence with example.
Show that the sum of a series of continuous function need not be contin3 uous.

Show that the limit function of a sequence of continuous function need
4 not be continuous.

5 Test the uniform convergence of $f_{n}(x)=\frac{n x}{1+n^{2} x^{2}} ; x \in[0,1], n=1,2, \ldots$ Let $f_{n}(x)=n^{2} x\left(1-x^{2}\right)^{n}, 0 \leq x \leq 1, n=1,2,3, \ldots$ then show that $\int_{0}^{1}\left\{\lim _{n \rightarrow \infty} f_{n}(x)\right\} d x \neq \lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x$.

7
Does point wise convergence of sequence of function implies uniform convergence? Justify.

8 Test the uniform convergence of $f_{n}(x)=\frac{x}{1+n x} ; x \in[0,1], n=1,2, \ldots \quad 2 \mathrm{~m}$

9

Question
Marks Examine the uniform convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}} \sin \left(\frac{x}{n}\right)$ on a 2 m bounded set E of \mathbb{R}

10
Examine the uniform convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}} \cos \left(\frac{x}{n}\right)$ on a bounded set E of \mathbb{R}
11 Find the radius of convergence of $\sum_{k=0}^{\infty} 3^{k} x^{k} ; k>0$
2 m
12 Find the radius of convergence of $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
2 m
13 Find the radius of convergence of $\sum_{k=0}^{\infty}\left(3^{k}+5^{k}\right) x^{k} ; k>0$
2 m
14 Show that $\int_{0}^{\infty} \frac{\cos x}{\sqrt{1+x^{2}}} d x$ is absolutely convergent. 2 m

15 For what value of c is the improper integral $\int_{0}^{\infty} e^{c x} d x$ convergent? 2 m Examine the convergence of the improper integral $\int_{2}^{\infty} \frac{x^{2}}{\sqrt{x^{7}+1}} d x, x \in$ 2 m $[2, \infty)$

17
Examine the convergence of the improper integral $\int_{0}^{\infty} \frac{1}{\sqrt{1+2 x^{2}}} d x, x \in$ $[2, \infty)$
18 Examine the convergence of the improper integral $\int_{1}^{\infty} \frac{\sin (x t)}{t^{2}} d t$
2 m
19 Define Gamma function and show that $\tau\left(\frac{1}{2}\right)=\sqrt{\pi}$
2 m
20 Show that $\tau\left(n+\frac{1}{2}\right)=\frac{(2 n)!}{4^{n}} \frac{\sqrt{\pi}}{n!}$
21 Define functions of several variables. 2 m

Show that continuity of f at a point need not imply the existence of 22 partial derivatives of f that point.

23 Define homogenous function with example.
2 m
24 Define differentiability of a function. If $f_{1}(x, y)=e^{x} \cos y$ and $f_{2}(x, y)=e^{x} \sin y$, then show that $J\left(\frac{f_{1}, f_{2}}{x, y}\right)$ is not zero at any point of \mathbb{R}^{2}.

27 If $x=\cos \theta y=\sin \theta \cos \phi z=-\sin \theta \sin \phi \cos \eta$ then find $J\left(\frac{x, y, z}{\theta, \phi, \eta}\right)$. Show that the function $u=x+y-z, v=x-y+z$ and $w=x^{2}+y^{2}+z^{2}-2 y z$ are not independent of one another. Find a relation between them.

Define Jacobian of functions.
Express the function $f(x, y)=x^{2} y+3 y-2$ in power of $(x-1)$ and $(y+2)$.
Express the function $f(x, y)=x^{2}+x y+y^{2}$ in power of $(x-1)$ and $(y-2)$.
Define local maximum and local minimum
Find the rectangle of perimeter l which has the maximum area.
Find the derivative of $y=\phi(x)$ at $x=1$ defined implicity by the equation $x^{2} y^{3}+2 x^{2} y+3 x^{4}-y=1$. Find the derivative of $y=\phi(x)$ at $x=1$ defined implicity by the equation $e^{-x \cos y}+\sin y=e$.

Show that the function relation $x+y+z-x y z=0$ defines an implicit function $z=\phi(x, y)$ near $(0,0,0)$. Hence Deduce ϕ_{x} and ϕ_{y} Find the partial derivatives $D_{1} \phi(x, y)$ and $D_{2} \phi(x, y)$ at $x=1, y=-1$ 2 m defined implicity by the equation $x^{2}+y^{2}+z^{2}-6=0$.

40 Evaluate $\int_{0}^{\infty} e^{-x y} \frac{\sin x}{x} d x$.

47 $x^{2} y^{3}+2 x^{2} y+3 x^{4}-y=1$ minimum at $(0,0)$. series for term by term integrability. Show that the series $\sum_{n=1}^{\infty} \frac{n x^{2}}{n^{3}+x^{3}}$ is uniformly convergent on $[0, k]$ for $k>0$ and deduce that $\lim _{x \rightarrow 1} \sum_{n=1}^{\infty} \frac{n x^{2}}{n^{3}+x^{3}}=\sum_{n=1}^{\infty} \frac{n}{n^{3}+1}$
Define Logarithmic function. Prove that i). $e^{\alpha \log x}=x^{\alpha}, \alpha \in Q$ ii). $\log x \rightarrow+\infty$ as $x \rightarrow+\infty$ iii). $\lim _{x \rightarrow \infty} \frac{\log x}{x^{\alpha}}=0, \alpha>0$

Express the function $f(x, y)=x^{2} y+3 y-2$ in power of $(x-1)$ and $(y+2)$.
Find the derivative of $y=\phi(x)$ at $x=1$ defined implicity by the equation

Show that $f(x, y)=2 x^{4}-3 x^{2} y+y^{2}$ has neither a maximum nor a

If $\left\{f_{n}\right\}$ is a sequence of continuous function defined on E and if $\left\{f_{n}\right\}$ converges uniformly to f on E then prove that f is continuous on E

Suppose that K is compact and i). $\left\{f_{n}\right\}$ is a sequence of continuous function defined on K. ii). $\left\{f_{n}\right\}$ converges point wise to a continuous function f on K. iii). $\left\{f_{n}(x)\right\} \geq\left\{f_{n+1}(x)\right\}: \forall x \in K ; n=1,2,3, \ldots$ then show that $\left\{f_{n}\right\}$ converges uniformly to f on K.
Test the series $\sum_{n=1}^{\infty} \frac{x}{\left(n+x^{2}\right)^{2}}$ for uniform convergence. Also examine the 6 m

Let $f(x)=\sum_{n=1}^{\infty} \frac{x}{n\left(1+n x^{2}\right)^{2}}, x \geq 1$. Prove that f is differentiable and f 6 m can be obtained by differentiating the series term by term.

Given a double sequence $\left\{a_{i j}\right\}, i=1,2,3, \ldots, j=1,2,3, \ldots$, suppose that $\sum_{\substack{j=1}}^{\infty}\left|a_{i j}\right|=b_{i} \quad(i=1$,
that $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i j}=\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{i j}$
Check the absolute convergence of the following integral: i). $\int_{0}^{\infty} \frac{\cos x}{\sqrt{1+x^{3}}} d x$ ii). $\int_{0}^{\infty} e^{-x^{2}} d x$

Let f be a real valued continuous function defined on an open disk D containing $\left(x_{0}, y_{0}\right)$. If $D_{1} f$ and $D_{2} f$ exist and are continuous at $\left(x_{0}, y_{0}\right)$ then show that f is differentiable at $\left(x_{0}, y_{0}\right)$.
If $f(x, y)=\tan ^{-1}\left(\frac{x^{5}+y^{5}}{x-y}\right), x \neq y$ show that $x D_{1} f(x, y)+$ $y D_{2} f(x, y)=2 \sin (2 f(x, y))$
Let $f(x, y)=\left\{\begin{array}{ll}\frac{x y\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)}, & \text { if }(\mathrm{x}, \mathrm{y}) \neq(0,0) \\ 0, & \text { if }(\mathrm{x}, \mathrm{y})=(0,0) .\end{array}\right.$ then show that 6 m $D_{21} f(0,0) \neq D_{12} f(0,0)$.

Let f be a real valued continuous function defined on a non empty open subset E of \mathbb{R}^{2}. If $D_{1} f$ and $D_{2} f$ exist on E and $D_{1} f$ continuous at $\left(x_{0}, y_{0}\right) \in E$ then show that f is differentiable at $\left(x_{0}, y_{0}\right)$.

Define critical point and saddle point of function. Examine the function $f(x, y)=y^{2}+4 x y+3 x^{2}+x^{3}$ for the extreme values.

State and prove the cauchy criterion for convergence of sequence of functions.

56
State and prove Weierstrass M-test.
If $0<f(x) \leq g(x)$ and f and g are both continuous for $a \leq x<\infty$ and
57 if $\int_{a}^{\infty} g(x) d x$ converges then show that $\int_{a}^{\infty} f(x) d x$ converges.
58 Prove that $\beta(x, y)=\frac{\tau(x) \tau(y)}{\tau(x+y)}$ where $x>0, y>0$.
59 State and prove the theorem on uniform convergence and continuity.
Prove the existence of a real continuous function on the real line which
60 is nowhere differentiable.

61 State and prove the theorem on uniform convergence and integration.
State and prove the theorem on uniform convergence and differentiation for sequence of functions.

Define the exponential function e^{x} and prove that i). $e^{x} e^{y}=e^{x+y}$ ii).
63 $\left(e^{x}\right)^{\prime}=e^{x}$ iii). e^{x} is strictly increasing iv). $\lim _{x \rightarrow \infty} e^{-x} x^{n}=0$ If f is continuous on $[a, \infty]$ and $\lim _{x \rightarrow \infty} x^{p} f(x)=A$ where $p>1$. Then
64 prove that $\int_{0}^{\infty} f(x) d x$ convergence absolutely.
65 State and prove basic mean value theorem.
66 State and prove Euler theorem for homogeneous function.
67 State and prove Young's theorem.

If a function $f: E \rightarrow R$ differentiable at $\left(x_{0}, y_{0}\right) \in E$, then show that $68 f$ is continuous at $\left(x_{0}, y_{0}\right)$ and has partial derivatives at $\left(x_{0}, y_{0}\right)$. Is the 8 m converse of the theorem is true? Justify.

Suppose f is continuous and has first order partial derivatives on $E \subseteq \mathbb{R}^{2}$.
69 If f has a local maximum (or local minimum) at a point $\left(x_{0}, y_{0}\right) \in E \quad 8 \mathrm{~m}$ then prove that $D_{1} f\left(x_{0}, y_{0}\right)=0$ and $D_{2} f\left(x_{0}, y_{0}\right)=0$.
$70 \quad$ State and prove stone-Weirstrass theorem
10 m
71 State and prove Abel's theorem. 10 m

Let $f(x, t)$ be defined and continuous on $a \leq t<\infty A \leq x \leq$ B. If $\int_{a}^{\infty} f(x, t) d t$ converges uniformly to $F(x)$ on $[A, B]$ then prove 72 $\int_{a}\left[\int^{B}[10 \mathrm{~m}\right.$ that $F(x)$ is continuous on $[A, B]$ and that $\int_{A}^{B}\left[\int_{a}^{\infty} f(x, t) d t\right] d x=$ $\int_{a}^{\infty}\left[\int_{A}^{B} f(x, t) d x\right] d t(10 \mathrm{M})$

73 State and prove Taylor's theorem for the function of two variables. 10 m

74 State and prove Implicit function theorem. (10M) 10m

Suppose f is a real valued function defined on an open subset $G \subseteq \mathbb{R}^{2}$ has continuous partial derivatives of second order and let $\left(x_{0}, y_{0}\right) \in G$ be a critical point of f. then prove that i). if at $\left(x_{0}, y_{0}\right), D_{11} f \cdot D_{22} f-\left(D_{12} f\right)^{2}>$ 0 and $D_{11} f>0$ or $D_{22} f>0$ then f has a minimum at $\left(x_{0}, y_{0}\right)$ ii). if at $\left(x_{0}, y_{0}\right), D_{11} f \cdot D_{22} f-\left(D_{12} f\right)^{2}>0$ and $D_{11} f<0$ or $D_{22} f<0$ then f has a maximum at $\left(x_{0}, y_{0}\right)$ iii). if at $\left(x_{0}, y_{0}\right), D_{11} f \cdot D_{22} f-\left(D_{12} f\right)^{2}<0$ then $\left(x_{0}, y_{0}\right)$ is a saddle point of f iv). if at $\left(x_{0}, y_{0}\right), D_{11} f \cdot D_{22} f-\left(D_{12} f\right)^{2}=0$ then the theorem gives no information.
Q.P Code: 16MSMTBH02

St. Philomena's College (Autonomous) Mysore

11 Semester M.Sc C3 Component Final Examination April - 2017

Subject: MATHEMATICS

Title: REAL ANALYSIS - III (HC)

Time: 3 Hours

Max Marks: 70
PART-A
Answer the following questions:
$7 \times 2=10$
I. a. Show that the limit function of continuous function need not be continuous.
b. Find the radius of convergence of $\sum_{k=0}^{\infty}\left(3^{K}+5^{K}\right) x^{K} ; K>0$.
c. For what values of C is the improper integral $\int_{0}^{\infty} e^{c x} d x$ is convergent?
d. Define gamma function and show that $\sqrt{\chi_{2}}=\sqrt{\pi} \quad \quad \Gamma / 2=\sqrt{\pi}$

Show that continuity of f at a point need not imply the existence of partial derivations of
e. f at that point.
f. Find the rectangle of perimeter l which has the maximum area.
g. Show that the function $u=x+y-2, v=x-y+z$ and $w=x^{2}+y^{2}+z^{2}-2 y z$ are not independent of are another.

PART - B

Answer the following:

2. a State and prove Weirstran - M test for uniform convergence of sequence of function. 7
b If $\{f n\}$ is a sequence of continuous function defined on E and if $f n \rightarrow f$ uniformly on E , then prove that f is continuous on E . OR
3 a State and prove theorem on uniform convergence and differentiation for sequence of function.
b Define the exponential function e^{x} and prove
a) $\left(e^{x}\right)^{1}=e^{x}$
b) e^{x} is strictly increasing
c) $\lim _{x \rightarrow \infty} e^{-x} x^{n}=0$

4 a If f is continuous on $[a, \infty]$ and $\operatorname{lum}_{x \rightarrow \infty} x^{n \prime} f(x)=A$ when $n>1$, then prove that $\int_{a}^{\infty} f(x) d x$ conveys absolutely.
 $\int_{a}^{\infty} g(x) \sin x d x$ converges.
c If g is continuous on $a<x \leq b, g(x)(x-a)^{2}$ is increasing an
$a<x \leq$ band if $\lim _{x \rightarrow a^{+}} g(x)(x-a)^{2}=0$ then prove that $\int_{a}^{b} g(x) \sin \left(\frac{1}{x-a}\right) d x$ converges.

OR

5 a
Suppose $f(x, t)$ is continuous for $a \leq t<\infty, A \leq x \leq B$ and $\int_{a}^{\infty} f(x, t) d t$ conveys uniformly to $F(x)$ in $[\mathrm{A}, \mathrm{B}]$, then prove that $\int_{A}^{B} F(x) d x=\int_{a}^{\infty}\left[\int_{i}^{B} f(x, t) d x\right] d t$.
b Prove that $\beta(x, y)=\frac{\sqrt{x} \cdot \sqrt{y}}{\sqrt{x+y}}, x, y>0$.
c Evaluate $\int_{0}^{1} \log \sqrt{x} d x$.
6 a State and prove mean value theorem for function of two variables.
b State and prove Euler's theorem for a homogeneous function of two variables.

OR

7 a State and prove Young's theorem.
b If $f(x, y)=\tan ^{-1}\left(\frac{x^{3}+y^{3}}{x-y}\right), x \neq y$, show that $x D_{1} f(x, y)+y D_{2} f(x, y)=\sin (2 f(x, y)$.
State and prove implicit function theorem. $O R$.
9 a Define critical point and saddle point of a function. Examine the function $f(x, y)=y^{2}+4 x y+3 x^{2}+x^{3}$ for the extreme values.
b Suppose f is continuous and has first order partial derivations on $\mathrm{E} \underline{\mathrm{C}} \mathrm{R}^{2}$. If f has a local maximum (or local minimum) at a point $\left.x_{0}, y_{0}\right) \in E$, then prove that $D_{1} f\left(x_{0}, y_{0}\right)=0$ and $D_{2} f\left(x_{0}, y_{0}\right)=0$. Further, give an example of a function having vanishing partial derivatives but not having a local maximum or local minimum at that point.

