St.Philomena's College (Autonomus), Mysore

PG Department of Mathematics

Question Bank (Revised Curriculum 2018 onwards)

Second Year - Third Semester (2019 -21 Batch)

Course Title (Paper Title): Elements Of Functional Analysis

Q.P.Code-57201

Unit	S.No	Question	Marks
1	1	Define a complete metric space with an example.	2m
1	2	Show that \mathbb{R}^n and \mathbb{C}^n are complete metric spaces.	$2 \mathrm{m}$
1	3	Define a normed linear space	$2 \mathrm{m}$
1	4	Prove that every normed linear space is metric space	$2 \mathrm{m}$
1	5	Define a contraction map and a fixed point	$2 \mathrm{m}$
1	6	Define first category and second category metric spaces	$2 \mathrm{m}$
2	7	Show that $l_n^{\ p}(\mathbb{R})$ is a complete metric space	$2 \mathrm{m}$
2	8	Define a separable space with an example	$2 \mathrm{m}$
2	9	Find the dense subspace of $l^p(\mathbb{R})$	$2 \mathrm{m}$
2	10	Show that every dense subspace of $l^{\infty}(\mathbb{R})$ is uncountably infinite	$2 \mathrm{m}$
3	11	Is Bolzano Weirstrass property is true in general metric space? Justif	y 2m
3	12	Is Cantor's intersection property is true i general metric space? Justif	ży 2m
3	13	Show that the boundedness in \mathbb{R} implies total boundedness	$2 \mathrm{m}$

3	14	Define total boundedness of a set with an example	2m
3	15	Define linear operator and bounded linear operator	2m
4	16	Define a poset with an example	2m
4	17	Define Banach space with n example	2m
4	18	Define an open map	2m
4	19	Show that $l_2^{\infty}(\mathbb{R})$ is an Hilbert space	2m
4	20	In a Hilbert space define Orthogonality and Orthogonal Compliment	2m
1	21	Define complete metric space. Give two examples	$4 \mathrm{m}$
1	വ	Define isometry with an example. Is every isometry is continuous? Jus-	4
1	22	tify.	4m
1	വ	Define Nowhere Dense set and Everywhere dense subset with an exam-	$4\mathrm{m}$
1	23	ple?	
2	24	Define first category and second category metric spaces.	$4 \mathrm{m}$
4	25	Prove that $ x + y ^2 - x - y ^2 + i x + iy ^2 - x - iy ^2 = 4xy$	$4 \mathrm{m}$
4	26	In a Hilbert space show that inner product space is continuous.	6m
1	27	Show that every closed subspace of a complete metric space is complete.	$7\mathrm{m}$
1	00	Define a normed linear space .Show that every normed linear space is a	7
1	28	complete metric space	$7 \mathrm{m}$
2	29	Prove that a Normed linear space is complete if and only if every abso-	7
2		lutely convergent series in X is convergent	$7 \mathrm{m}$

3	30	Show that the linear space $B(N, N')$ over \mathbb{F} is a normed linear space with respect to $ T = Sup\{ T(x) ; x \le 1 \}$	$7\mathrm{m}$
4	31	In a Hilbert space show that inner product is continuous.	$7\mathrm{m}$
4	32	If M is a closed linear subspace of a Hilbert Space H then prove that $H = M \oplus M^\perp$	$7\mathrm{m}$
4	33	In a Hilbert Space H , Define orthonormal set and prove Bessel's inequality.	7m
3	34	Define a an inner product space and Normed linear space . If $(H,(.,.))$ is an inner product space then prove that it is a Normed linear space	8m
1	35	Show that $B^*((x), d)$ is a complete metric space	10m
1	37	State and prove Metric completion theorem	10m
1	38	State and prove Banach fixed point theorem	10m
1	39	State and prove Baire's Category theorem.	10m
4	40	In a Hilbert space prove the Paralleogram law and Pythogoras theorem	10m
1	41	Prove Picards theorem as a consequence of Banach Fixed Point theorem	14m
2	42	Show that the following is equialent for the metric space (X, d) a) X is Compact b) X is Sequentially Compact c) X is complete and totally bounded	14m

		a) T is continuous linear operator.	
2	43	b) T is continuous at $x = 0$.	14m
		c) T is bounded linear operator.	
		d) If $S = \{x \in N; x \le 1\}$ is the closed unit sphere in N then $T(S)$ is	
		bounded in N'	
3	44	State and prove Hahn Banach theorem for any Real linear space .	14m
3	45	State and prove Hahn Banach theorem for any Complex linear space .	14m
1	4.0	State and prove Open mapping theorem by explaining the definitions	1 /
)	46	that are needed to prove the theorem.	14m
1	47	State and prove Closed Graph theorem by explaining the definitions that	1.4
)		are needed to prove the theorem.	14m
)	48	State and prove Principle of uniform boundedness by explaining the def-	1 /
)		initions that are needed to prove the result.	14m

If $T: N \to N'$ is a linear operator from an normed linear space N to a

normed linear space N^\prime then show that the following are equivalent

Let H be a Hilbert space such that $S \subset H$ then prove the following results

- a) $S \cap S^{\perp} = \{0\}$
- 4 49 b) S^{\perp} is a closed subspace of H.

14m

14m

- c) $S_1 \subseteq S_2$ that implies $S_2^{\perp} \subseteq S_1^{\perp}$.
- d) $S \subseteq S^{\perp \perp}$

If e_i is an orthonormal set in a Hilbert Space H then prove that the following is equivalent.

a) e_i is complete.

4

50

- b) $x \perp e_i \implies x = 0$
 - c) $x \in H \implies x = \sum (x, e_i)e_i$.
 - d) $x \in H \implies ||x||^2 = \sum ||(x, e_i)||^2$

Q.P Code:50631

St. Philomena's College (Autonomous) Mysore III Semester M.Sc. Make-up Examination July - 2019

Subject: MATHEMATICS

Title: Elements of Functional Analysis

Time: 3 Hours

Max Marks: 70

Instruction to the Candidates: Answer All the questions. All questions carry equal marks.

		DADED A	
		PART –A Answer the following:	7×2=14
1.	a.	Show that a Cauchy sequence in a metric space need not necessarily be convergent.	/ / 2-14
	b.	Show that every isometry in a metric space is continuous.	
	c.	State Hahn-Banach theorem for a normed linear space.	
	d.	What do you mean by metric completion?	
	e.	State principle of uniform boundedness.	
	f.	In a Hilbert space state and prove parallelogram law.	
	g.	State and prove Bessel's inequality for a Hilbert space with finite orthonormal set.	
		PART - B	
2.	a.	State and prove Banach fixed point theorem.	7+7
	b.	State and prove Cantor's intersection theorem.	
		OR	
3.		State and prove Ascoli-Arzella's theorem.	14
4.		State and prove Stone Weierstrass theorem for real case.	14
		OR	7.7
5.	а.	State and prove Hahn-Banach theorem for complex linear space.	7+7
	b.	If $\frac{1}{p} + \frac{1}{q} = 1$, $p \neq \infty$ prove that $l_p = l_q$.	14
6.		State and prove open mapping theorem.	
			07
7.	a.	State and prove uniform boundedness theorem. State and prove uniform boundedness theorem. is isomorphism from $B(N, N)$ into $B(N^*, N^*)$.	07
	b.		PTO

- Define a complete orthonormal set in a Hilbert space. As an example show that $\left(\frac{\sin nx}{\sqrt{\pi}}, \frac{\cos nx}{\sqrt{\pi}}\right)$ is the classical complete orthonormal set in L^2 [0, 2π].
 - b. If H is a Hilbert space and let $\{e_i\}$ be an orthonormal set in H, prove the following are equivalent:

- i) $\{e_i\}$ is complete, ii) $x \perp \{e_i\} \Rightarrow x = 0$ iii) $x \in H \Rightarrow x = \sum (x, e_i) e_i$ iv) $x \in H \Rightarrow ||x||^2 = \sum |(x, e_i)|^2$

- If M and N are closed linear subspace of a Hilbert space H and if $M \perp N$, prove that 9. M + N is also a closed subspace of H.
 - State and prove Riesz representation theorem on conjugate space of a Hilbert space.

Scanned by CamScanner

7+7

4+10

T