St.Philomena's College (Autonomus), Mysore

PG Department of Mathematics

Question Bank (Revised Curriculum 2018 onwards)

First Year - Third Semester (2019 -21 Batch)

Course Title (Paper Title): Topology-I Q.P.Code-57202

Unit	Sl.No	Question	Marks
1	1	Show that the topologies of \mathbb{R}_l and \mathbb{R}_k are not comparable.	$2\mathrm{m}$
1	2	Let A and B denote subsets of a space X. Prove that $\overline{A \cup B} = \overline{A} \cup \overline{B}$.	$2\mathrm{m}$
1	3	Find the boundary and the interior of the subsets $A = \{x \times y/y = 0\}$.	$2\mathrm{m}$
1	4	Show that if $X = \{a, b, c\}$ the collection of all one point subsets of X is	is D
	4	a basis for the discrete topology on X .	Zm
1	5	Prove that one point sets are closed in Haussdorff space.	2m
1	C	If \mathcal{B} is a basis for the topology of X and $Y \subset X$. Show that the collection	n
	6	$\mathcal{B}_Y = \{B \cap Y B \in \mathcal{B}\}$ is a basis for the subspace topology on Y.	2m
1	7	If A is a subset of a topological space. Prove that $\overline{A} = IntA \cup BdA$.	$2\mathrm{m}$
1	8	If A is a subsets of a space X. Prove that $IntA$ and BdA are disjoint.	2m
1	9	Find the set of all limit points of $A = \left\{\frac{1}{n} : n \in \mathbb{Z}^+\right\}$.	2m
1	10	Define a T_1 space. Is T_1 space is a Haussdorff? Justify.	$2\mathrm{m}$
1	11	Define subbasis of topological space with an example.	$2\mathrm{m}$
2	12	Prove that the composite map of two continuous maps is continuous.	2m

		Suppose that $f: X \to Y$ is continuous. $A \subset X$, and $x \in X$. If x is	
2	13	a limit point of A, is it necessarily true that $f(x)$ a limit point of $f(A)$?	$2\mathrm{m}$
		Justify.	
-	14	If A is a connected subspace of a space X and $A \subset B \subset \overline{A}$. Prove that	0
2	14	B is also conneted.	2m
2	15	Show that the unit ball B^n is path connected in \mathbb{R}^n .	$2\mathrm{m}$
2	10	Let $Y = [0, 1) \cup (1, 2]$ be a subspace of R with standard topology. Check	0
2	16	wheather Y is connected or not.	$2\mathrm{m}$
2	17	Define a locally path connected space.	$2\mathrm{m}$
2	18	Show that $X = \{0\} \cup \left\{\frac{1}{n} : n \in \mathbf{Z}^+\right\}$ of R is compact.	2m
2	19	Show that every closed subsets of a compact space is compact.	2m
2	20	Define Homeomorphism with an example.	2m
2	21	Define a quotient map with an example.	2m
3	22	Define a linear Continuom.	$2\mathrm{m}$
3	23	Define a path connected space.	$2\mathrm{m}$
3	24	Define a locally path connected space.	$2\mathrm{m}$
3	25	Is the space \mathbf{R}_l is connected? Why?	$2\mathrm{m}$
3	26	Show that a component in a topological space is connected.	2m
4	27	Is the set $(0,1)$ compact in R ? Why?	2m
4	28	Show that every closed subset of a compact space is compact.	$2\mathrm{m}$

4	29	Show that $(0,1]$ is not compact in the space R .	$2\mathrm{m}$
4	20	Show that a bijective continuous mapping from a compact space to a	9 m
4	50	Hausdorff space is a homeomorhism.	2111
4	91	Give an example of a topological space that is not compact but is locall	2m
4	51	compact.	
4	32	Define Lebesque number.	2m
1	33	Justify with an example that a limit point compact space need not be	2m
T	00	compact.	
4	34	Is compact subset of a topological space is closed? Justify.	2m
1	35	Prove that the lower limit topology on ${\bf R}$ is strictly finer than the stan-	4m
Ŧ	00	dard topology on \mathbf{R} .	1111
		Let \mathcal{S} be a subbasis for a topology on X . Then prove that the collection	
1	36	${\mathcal B}$ of all finite intersection of elements of ${\mathcal S}$ form a basis for a topology on	4m
		Χ.	
1	37	Let X be a topological space, $A \subset X$. Then prove that $\overline{A} = A \cup A'$.	4m
1	38	Prove that a subspace of a Hausdorff space is Hausdorff space.	4m
1	39	Let X be a set and τ_f be the collection of all subsets U of X such that	6m
-		$X - U$ is either finite or all of X. Prove that τ_f is a topology on X.	

Let \mathcal{B} and \mathcal{B}' be bases for topologies τ and τ' respectively. Prove that τ'

40 is finer than τ if and only if for each $x \in X$ and each element $B' \in \mathcal{B}'$ 6m such that $x \in B' \subset B$.

Let X and Y be two topological spaces and

1

1

1

1

1

1

1

41
$$S = \{\pi_1^{-1}(U) : U \text{ is open in } X\} \cup \{\pi_2^{-1}(V) : V \text{ is open in } Y\}.$$
 6m

Then prove that \mathcal{S} is a subasis for the product topology on $X \times Y$.

42 Prove that the product of two Hausdorff space is Hausdorff. 6m Let X be a topological space. let A be a subset of X. Then prove that 43 $x \in \overline{A}$ if and only if every open set U containg x intersects A. Let X be a topological space and Y be a subspace of X. Prove that a

44 subset A of Y is closed in Y if and only if $A = C \cap Y$ where C is some 8m closed set in X.

Let X be a T_1 - space, A be a subset of X and $x \in X$. Then prove that

45 $x \in A'$ if and only if every neighbourhood of x contains infinitely many 8m points of A.

	Show	that	X	is a	Hausdorff	space	if and	only if	the f	diagonal	
46											

8m

 $\triangle = \{x \times x / x \in X\} \text{ is closed in } X \times X$

Let $f: X \to Y$ be a map. Then prove that the following are equivalent.

2	47	1. f is continuous .	8m	
	11	2. for every subset A of X, $f(\overline{A}) \subset \overline{f(A)}$.	0111	
		3. for every closed subset B of Y, $f^{-1}(B)$ is closed in X.		
2	48	Prove that \mathbf{R}^W is metrizable in the product topology.	14m	
2	49	Prove that arbitraty product of Hausdorff spaces is Hasudorff.	$8\mathrm{m}$	
2	50	State and prove Pasting Lemma.	$6\mathrm{m}$	
		Let $f: A \to X \times Y$ be given by the equation $f(a) = (f_1(a), f_2(a))$, where		
2	51	$f_1: A \to X$ and $f_2: A \to Y$. Prove that f is continuous if and only if f_1	6m	
		and f_2 are continuous.		
2	52	Prove that \mathbf{R}^n is metrizable.	8m	
		Let $f_n: X \to Y$ be a sequence of continuous functions from a topological		
2	53	space into a metric space. Show that if $f_n \to f$ uniformly, then f is	6m	
		continuous.		
		Let $f: X \to Y$ be a mapping from a metrizable space X into a topological		
2	54	spave Y. Prove that f is continuous if and only if for every sequence $\{x_n\}$	8m	
		in X converging to x, the sequence $\{f(x_n)\}$ converges to $f(x)$ in Y.		
2	55	State and prove sequence lemma.	$6\mathrm{m}$	
9	56	Prove that a space X is connected if and only if its only subsets that are	6.772	
3	90	both open and closed are \emptyset and X itself.	OIII	

3	57	Prove that if a collection of connected subsets have a point in common,	бm
	01	then the union of elements of the collection is connected.	0111
3	58	Prove that continuous image of a connected space is connected.	$6\mathrm{m}$
9	50	Let L be a linear continum in the order topology. Then prove that every	9 m
0	99	iterval or a ray in L is connected.	8m
0	60	Prove that $I \times I = [0,1] \times [0,1]$ is a linear continum in the dictionary	0
3	60	order.	6m
		Let X be a topological space. Prove that the path components of X are	
3	61	disjoint, path connected subsets whose union equals X and each path	$8\mathrm{m}$
		connected set intersects only one of them.	
0	62	Prove that a space is locally connected if and only if has a basis consisting	8m
3		of connected sets	
		Let X be a topological space. Then prove that each path component of	
3	63	X is contained in a component of X . Also, show that if X is locally path	$6\mathrm{m}$
		connected, then they are equal.	
0	C A	Prove that the product of connected spaces in the product topoloy is	1 4
3	04	connected.	14m
		Let Y be a subspace of a topological space X. Prove that Y is compact	
4	65	in subspace topology if and only if every covering of Y by sets open in	$8\mathrm{m}$
		X has a finite sub-collection that covers Y .	

4	66	State and prove Tube lemma.	$6\mathrm{m}$
4	67	Prove that the product of finitely many compact space is compact.	$8\mathrm{m}$
4	69	Let X be a simply ordered set with the least upper bound property. Then	9.00
4	08	prove that every closed interval in X is compact.	8m
4	60	Prove taht a subset of \mathbf{R}^n is compact if and only if it is closed and	0
4	09	bounded.	8111
		Let X be a Hausdorff space. then prove that X is locally compact if and	
4	70	only if for each $x \in X$, each open set U of x, there is an open set V	$8\mathrm{m}$
		containing x such that \overline{V} is compact and $\overline{V} \subset U$.	
	71	Let X be a compact space and Y be an order set in the order topology.	
4		If $f: X \to Y$ is continuous, then prove that there exist $c, d \in X$ such	$6\mathrm{m}$
		that $f(c) \le f(x) \le f(d) \forall x \in X.$	
		Let X be a metrizable space. Prove that the following are equivalent:	
4	72	1. X is compact.	1 /
4		2. X is limit point compact.	14111
		3. X is sequentially compact.	

Post Oraduate Studies & Research Centre St. Philomena's College (Autonomous) MYSURU-570 015

LISRARY

Q.P Code: 50632

Max Marks: 70

St. Philomena's College (Autonomous) Mysore III Semester M.Sc. Make-up Examination August - 2019

Subject: MATHEMATICS

Title: TOPOLOGY - I

Time: 3 Hours

Instruction to the Candidates: Answer All the questions. All questions carry equal marks.

PART-A

Answer the following:

- a. Define an order topology and give an example. 1.
 - b. Prove that the collection $S = \{\pi_1^{-1}(\cup) / \cup \text{ is open in } X\} \cup \{\pi_2^{-1}(V) / V \text{ is open in } Y\}$ is a sub basis for the product topology on $X \times Y$.
 - c. Is every open set containing $x \in X$, intersects $E \subseteq X$ at infinitely many points, where x is a limit point of E? Justify.
 - d. Determine the closure of the following subsets of R^2
 - i) $\{ \frac{1}{n} \times 0 \mid n \in N \}$
 - ii) $\{x \times 0 / 0 < x < 1\}$

Define one-point compactification and give an example. e.

Prove that a path connected space is connected. f.

Define homeomorphism and give an example. g.

PART – B

2. a.	If β and β^{l} is basis for the topologies T and T ¹ respectively on X. Prove that the	06
	following are equivalent:	
	i) T^1 is finer than T	
	ii) for each $x \in X$ and each basis element $B \in \beta$ containing x, there is	
	a basis element $B^1 \in \beta^1$ such that $x \in B^1 \subseteq B$	
b.	If X is a toplogical space and C is a collection of open sets of X such that for each	08
	$x \in X$ and each open set U of X containing x, there is an element c of C such that	
	$x \in c \subseteq U$ then prove that C is a basis for the topology of X.	
	OR	
3. а.	Prove that the lower limit topology on R is strictly finer than the standard topology.	04
		рто

Scanned by CamScanner

 $7 \times 2 = 14$

b. If Y is a subspace of X, prove that a set A is closed in Y if and only if it equals the 06 intersection of a closed set of X with Y. c. If B is a basis for a topology T on X, prove that T equals the collection of all unions of 04 elements of B. Prove that $x \in \overline{A}$ is and only if every open set U containing x intersects A. 04 4. a. If X and Y are topological spaces and $f: X \to Y$ is a function, prove that the Ti 06 b. following are equivalent: In: i) f is continuous ii) for every subset A of X $f(\overline{A}) \subseteq \overline{\mathfrak{f}(A)}$ iii) for every closet subset B in Y, the set $f^{-1}(B)$ is closed in X. 1. 04 State and prove Pasting lemma. c. OR State and prove sequence lemma, further prove that R^{ω} with box topology is not 07 5. a. metrizable. b. If $f: A \to \pi x_{\alpha}$ is given by the equation $f(a) = (f_{\alpha}(a))_{\alpha \in J}$ where $f_{\alpha}: A \to x_{\alpha}$ for 07 each α and $\pi_{\alpha \in J} x_{\alpha}$ have the product topology, prove that the function f is continuous if and only if each function f_{α} is continuous. Further prove that the above statement is not true if $\pi_{\alpha} x_{\alpha}$ has the box topology. If A is a connected subset of X, and $A \subseteq B \subseteq \overline{A}$ prove that B is also connected. 6. a. 2. 10 b. Define Linear continuum. If L is a linear continuum in the order topology, prove that L is connect. OR 7. a. Prove that the union of collections of connected sets that have a point common is 04 connected. 05 b. State the prove Intermediate value theorem. 05 c. Prove that finite cartition product of connected set is connected. 3. 05 a. If Y is a compact subset of the Hausdarff space X and $x_0 \notin Y$, prove that there exist 8. disjoint open sets U and V of X containing x_0 and Y respectively. 4. 09 b. Prove that product of finitely many compact sets is compact. 5. OR 07 a. If X is a metrizable space, prove that the following are equivalent: 9. i) X is compact ii) X is limit point compact iii) X is sequentially compact ė1 b. Prove that the continuous image of a compact set is compact. Further if $f: X \to Y$ is objective continuous function, where X is compact and Y is Hausdorff, prove that f is a homeomorphism.

Scanned by CamScanner