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Show that the topologies of R; and R, are not comparable. 2m
Let A and B denote subsets of a space X. Prove that AUB=AUB. 2m
Find the boundary and the interior of the subsets A = {x x y/y =0}. 2m
Show that if X = {a,b, c} the collection of all one point subsets of X is
2m
a basis for the discrete topology on X.
Prove that one point sets are closed in Haussdorff space. 2m
If B is a basis for the topology of X and Y C X. Show that the collection
By ={BNY/B € B} is a basis for the subspace topology on Y. "
If A is a subset of a topological space. Prove that A = IntA U BdA. 2m
If A is a subsets of a space X. Prove taht IntA and BdA are disjoint. 2m
Find the set of all limit points of A = {% ‘n € Z*} . 2m
Define a T7 space. Is T} space is a Haussdorff? Justify. 2m
Define subbasis of topological space with an example. 2m
Prove that the composite map of two continuous maps is continuous. 2m
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Suppose that f : X — Y is continuous. A C X, and z € X. If x is
a limit point of A, is it necessarily true that f(x) a limit poit of f(A)?
Justify.

If Ais a connected subspace of a space X and A C B C A. Prove that
B is also conneted.

Show that the unit ball B™ is path connected in R"™.

Let Y =[0,1) U (1, 2] be a subspace of R with standard topology. Check
wheather Y is connnected or not.

Define a locally path connected space.

Show that X = {0} U {% ‘n € Z*} of R is compact.

Show that every closed subsets of a compact space is compact.

Define Homeomorphism with an example.

Define a quotient map with an example.

Define a linear Continuom.

Define a path connected space.

Define a locally path connected space.

Is the space R, is connected? Why?

Show that a component in a topological space is connected.

Is the set (0,1) compact in R? Why?

Show that every closed subset of a compact space is compact.
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Show that (0, 1] is not compact in the space R.

Show that a bijective continuous mapping from a compact space to a
Hausdorff space is a homeomorhism.

Give an example of a topological space that is not compact but is locall
compact.

Define Lebesque number.

Justify with an example that a limit point compact space need not be
compact.

Is compact subset of a topological space is closed? Justify.

Prove that the lower limit topology on R is strictly finer than the stan-
dard topology on R.

Let S be a subbasis for a topology on X. Then prove that the collection
B of all finite intersection of elements of S form a basis for a topology on
X.

Let X be a topological space, A C X. Then prove that A = AU A’
Prove that a subspace of a Hausdorff space is Hausdorff space.

Let X be a set and 74 be the collection of all subsets U of X such that

X — U is either finite or all of X. Prove that 74 is a topology on X.
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Let B and B’ be bases for topologies 7 and 7’ respectively. Prove that 7/
is finer than 7 if and only if for each x € X and each element B’ € B’
such that z € B’ C B.

Let X and Y be two topological spaces and
S={n"(U):U is open in X} U{my " (V):V is open in Y} .

Then prove that S is a subasis for the product topology on X x Y.
Prove that the product of two Hausdorff space is Hausdorff.

Let X be a topological space. let A be a subset of X. Then prove that
r € A if and only if every open set U containg x intersects A.

Let X be a topological space and Y be a subspace of X. Prove that a
subset A of Y is closed in Y if and only if A = C'NY where C' is some
closed set in X.

Let X be a Ti- space, A be a subset of X and z € X. Then prove that
x € A" if and only if every neighbourhood of x contains infinitely many
points of A.

Show that X is a Hausdorff space if and only if the diagonal

A ={xxz/reX}isclosed in X x X
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Let f: X — Y be a map. Then prove that the following are equivalent.
1. f is continuous .

2. for every subset A of X, f(A) C f(A).

3. for every closed subset B of Y, f~!(B) is closed in X.

Prove that R is metrizable in the product topology.

Prove that arbitraty product of Hausdorff spaces is Hasudorff.

State and prove Pasting Lemma.

Let f: A — X xY be given by the equation f(a) = (fi(a), f2(a)), where
fi:A— X and fo: A — Y. Prove that f is continuous if and only if f;
and f, are continuous.

Prove that R" is metrizable.

Let f, : X — Y be a sequence of continuous functions from a topological
space into a metric space. Show that if f, — f uniformly, then f is
continuous.

Let f : X — Y be a mappig from a metrizable space X into a topological
spave Y. Prove that f is continuous if and only if for every sequence {x,, }
in X converging to x, the sequence {f(x,)} converges to f(x) in Y.
State and prove sequence lemma.

Prove that a space X is connected if and only if its only subsets that are

both open and closed are () and X itself.
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Prove that if a collection of connected subsets have a point in common,
then the union of elements of the collection is connected.

Prove that continuous image of a connected space is connected.

Let L be a linear continum in the order topology. Then prove that every
iterval or a ray in L is connected.

Prove that I x I = [0,1] x [0,1] is a linear continum in the dictionary
order.

Let X be a topological space. Prove that the path components of X are
disjoint, path connected subsets whose union equals X and each path
connected set intersects only one of them.

Prove that a space is locally connected if and only if has a basis consisting
of connected sets

Let X be a topological space. Then prove that each path component of
X is contained in a component of X. Also, show that if X is locally path
connected, then they are equal.

Prove that the product of connected spaces in the product topoloy is
connected.

Let Y be a subspace of a topological space X. Prove that Y is compact
in subspace topology if and only if every covering of Y by sets open in

X has a finite sub-collection that covers Y.
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State and prove Tube lemma.

Prove that the product of finitely many compact space is compact.

Let X be a simply ordered set with the least upper bound property. Then
prove that every closed interval in X is compact.

Prove taht a subset of R" is compact if and only if it is closed and
bounded.

Let X be a Hausdorff space. then prove that X is locally compact if and
only if for each x € X, each open set U of x, there is an open set V'
containing « such that V' is compact and V C U.

Let X be a compact space and Y be an order set in the order topology.
If f: X — Y is continuous, then prove that there exist ¢,d € X such
that f(c) < f(z) < f(d) V =z € X.

Let X be a metrizable space. Prove that the following are equivalent:

1. X is compact.

2. X is limit point compact.

3. X is sequentially compact.
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(nstruction to the Candidates: Answer Al the questions. All questions carry equal marks.

PART -A

Answer the following:

a. Define an order topology and give an example.

Prove that the collection § = {zrl‘ '(V)/U is open in .\’}u {ﬂ';l (V) / V is open in Y|
is a sub basis for the product topology on X x ¥ .

e e

¢. Isevery open set containing x € .\, intersects £ < .\ at infinitely many points,
where x is a limit point of E? Justify.

d. Determine the closure of the following subsets of R?
i) {4x0/ neN}

ii) {xx0/0<x<l}

I

e. Define one-point compactification and give an example. :
f. Prove that a path connected space is connected. '
¢. Define homeomorphism and give an example. i
PART -B
2. a IfBand £ is basis for the topologies T and T' respectively on X. Prove that the 06

following are equivalent:
i) T'isfinerthanT .
ii) for each x € X and each basis element B e [ containing x, there 18

a basis element B' € B' suchthat xe B' ¢ B

b. IfX isa toplogical space and C is a collection of open sets of X such that for each 08
x € X and each openset U of X containingx, there is an element c of C such that
x € cc U then prove that C is a basis for the topology of X.
OR
3. a. Prove that the lower limit topology on R is strictly finer than the standard topology. %
PTO :
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If Y is a subspace of Y, prove that a sct A is closed in Yifand only if it equals the
intersection of a closed set of X with V.

[f B is a basis for a topology T on X, prove that 7' equals the collection of alf unigng of
clements of B.

Prove that x € A is and only if every open set [J containing x intersects A.

If Y and ¥ are topological spaces and f X =Y isafunction, prove that the

following are equivalent:
i) / is continuous

i) for every subset A of X f(})g f(4)
iii) for every closet subset B in Y, the set f7'(B)is closed in X.

State and prove Pasting lemma.
OR

State and prove sequence lemma, further prove that R” with box topology is not
metrizable.
If f:A4— mx, is given by the equation f (a)= (f,(a)),., where f, 4 —x, for

ae)

cach @ and 7 x, have the product topology, prove that the function fis continuous

ac)

if and only if each function f, is continuous. Further prove that the above statement

is not true if 7 x, has the box topology.

ael
If 4 is a connected subset of X, and A < B¢ A prove that B is also connected.

Define Linear continuum. [f Z is a linear continuum in the order topology, prove that
L is connect.

OR
Prove that the union of collections of connected sets that have a point common is
connected.
State the prove Intermediate value theorem.

Prove that finite cartition product of connected set is connected.

If'Y'is a compact subset of the Hausdarff space X and x, Y, prove that there exist

disjoint open sets U and V' of X containing x, and ¥ respectively.

Prove that product of finitely many compact sets is compact

OR
If X is a metrizable space, prove that the following are equivalent:
i) X is compact '
ii) A'is limit point compact
iii) X is sequentially compact

Prove that the continuous image of a compact set is compact. Further if f: X = re
objective continuous function, where . .

X is compact and ¥ is Haus ~ rave that
f is a homeomorphism. g 'is Hausdorff, prove!
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