ST. PHILOMENA'S COLLEGE (AUTONOMOUS), MYSORE
PG DEPARTMENT OF COMMERCE
QUESTION BANK (Revised LOCF - 2021)
FIRST YEAR- FIRST SEMESTER (2021 Batch)

QP Code: 83131
COURSE TITLE (PAPER TITLE): STATISTICS FOR BUSINESS DECISIONS

UNIT	Sl. No	QUESTIONS	MARKS
1	1.	Define independent and mutually exclusive events with examples.	5
1	2.	Define probability and explain briefly the importance of this concept in managerial decision making.	5
1	3.	What is binomial distribution and what are its main characteristics?	5
1	4.	Write a note on binomial distribution.	5
1	5.	Discuss the salient features of binomial distribution.	5
1	6.	What is poisson distribution? Give the condition under which poisson distribution is applicable.	5
1	7.	Write a note on poisson distribution.	5
1	8.	What are the characteristics of poisson distribution?	5
1	9.	What is poisson distribution? State the assumptions of poisson distribution.	5
1	10.	State the importance of poisson distribution.	5
1	11.	Define normal distribution. What are its main characteristics?	5
1	12.	State the important properties of normal probability distribution.	5
1	13.	Briefly explain the concept of probability distribution. State the characteristics of normal distribution.	5
1	14.	Write a short note on sampling distribution of mean.	5
1	15.	Briefly explain the concept of standard error.	5
1	16.	State the qualities of a good sample.	5
1	17.	Write a note on probability and non-probability sampling.	5
1	18.	Write a note on stratified sampling.	5
1	19.	Write a note on cluster sampling.	5
1	20.	Write a short note on convenience sampling.	5
1	21.	A bag contains 4 white, 5 red and 6 green balls. 3 balls are drawn at random. What is the probability that a white, a red and the green ball aredrawn?	5
1	22.	A bag contains 5 red and 6 black balls. 5 balls are drawn at random. What is the probability that drawn balls comprise 3 red and 2 black balls?	5
1	23.	A bag contains 8 red balls and 5 white balls. Two successive draws are made	5

		without replacement. Find the probability that the first drawing will give 3 white and the $2^{\text {nd }} 3$ red balls.	
1	24.	A bag contains 10 Rupee coin, 7 fifty paise coin and 4 twenty paise coin. Find the probability of drawing (a) a rupee coin, (b) Three-rupeecoin (c) Three coins one of each type.	5
1	25.	Four coins are tossed at a time. What is the probability of getting (i) 2 heads and 2 tails (ii) Atleast two heads?	5
1	26.	Out of 2000 families with four children each, how many would you expect to have (a) at least one boy (b) at least 2 boys.	5
1	27.	It is known from the past experience that in a certain factory 3% products are defective. A sample of 100 items is taken at a random. Find the probability that exactly 5 products are defective (Given $\mathrm{e}^{-3}=0.4979$).	5
1	28.	A box contains 100 transistors, 20 of which are defective, 10 are selected at random for inspection. What is the probability that (i) all are defective (ii) at least one is defective?	5
1	29.	If 5\% of the electric bulbs manufactured by a company are defective. Find the probability of defective in a sample of 100 bulbs (i) None is defective (ii) 5 bulbs are defective (Given $\mathrm{e}^{-5}=.007$)	5
1	30.	If 20% of the bolts produced by a machine are defective; determine the probability that of 4 bolts chosen at random (a) one is defective (b) at the most 2 bolts are defective.	5
1	31.	A production engineer finds that an engineer mechanic working in a machine shop completes a certain task are approximately distributed with a mean 15 minutes, standard deviation of 3 minutes. Find the probability that the task is completed (a) in less than 8 minutes (b) between 10 and 12 minutes.	5
1	32.	Suppose in the admission test conducted by a management institute, the scores obtained by the applicants are normally distributed with mean 200 and standard deviation is 45 . If a sample of 150 scores is taken, what is the probability that the sample mean will be lying between 190 and 208.	5
1	33.	Suppose the distribution of monthly salary of bank employees is skewed negatively. This distribution has a mean of Rs. 19,000 per month and a standard deviation of Rs. 2,000. If we draw a random sample of 30 employees what is the probability that their salary will average more than Rs. 19,750 per month?	5
1	34.	The strength of the wire produced by company X has a mean of $4,500 \mathrm{~kg}$ and a standard deviation of 200 kg . Company Y has a mean of $4,000 \mathrm{~kg}$ and a	5

		standard deviation of 300 kg . If 50 wires of company X and 100 wires of company Y are selected at random and tested for strength, what is the probability that the sample mean strength of X will be at least 600 kg more than that of Y?	
1	35.	In a particular area of a metropolitan city, 3 percent of the population is suffering from T.B. If a random sample of 500 residents of this area is taken, what is the probability that the proportion of T.B. patients is between 2 percent to 3.5 percent?	5
1	36.	It is believed that 30% of the population in Mysore is illiterate and 40% of the population of old Mysore is illiterate. A random sample of 500 is taken from the Mysore and 120 of them are found to be illiterate whereas a sample of 700 is taken from old Mysore and 308 are found to be illiterate. Find the probability of drawing two samples with a difference in the two sample proportions greater than what is observed.	5
1	37.	A company manufactures gold chains. The mean weight of all the chains is found to be 80 grams and the standard deviation is 25 grams. Find the standard error of the sampling distribution of mean if a sample of 9 chains is taken and compare it when the sample size is increased to 70 chains.	5
1	38.	Salary distribution of workers in North and South India is given in the following table: It is presumed that there is no difference between the mean wage of all workers in North India and South India. (a) Convert the above information into a standardized normal variable (b) Find the probability that the daily mean wages of workers in North India is less than Rs. 47.	5
2	39.	What are the main components of time series? Briefly explain.	5
2	40.	Distinguish between secular trend, seasonal variations and cyclical fluctuations.	5
2	41.	What is a time series? What are its main components? Discuss the various methods of studying variations in a time series.	5
2	42.	What do you understand by a time series? Explain its various components and give uses of time series analysis.	5

2	43.	Explain seasonal variations in a time series. Mentions the various methods of determining it.	5
3	44.	Write a note on parametric tests.	5
3	45.	State the uses of parametric tests.	5
3	46.	Distinguish between parametric and non-parametric tests.	5
3	47.	Write a note on multiple correlation.	5
3	48.	What is multiple correlation and state its assumptions.	5
3	49.	Write a short note on partial correlation.	5
3	50.	State the limitations of partial correlation.	5
3	51.	State the objectives of multiple regression analysis.	5
3	52.	On the basis of the following information compute: $\begin{aligned} & \text { (i) } \mathrm{r}_{23.1} \text { (ii) } \mathrm{r}_{13.2} \text { (iii) } \mathrm{r}_{12.3} \\ & \mathrm{r}_{12}=0.50, \mathrm{r}_{13}=0.4, \mathrm{r}_{23}=0.1 \end{aligned}$	5
3	53.	Calculate coefficient of multiple correlations $\mathrm{R}_{1.23}, \mathrm{R}_{2.13}$ and $\mathrm{R}_{3.12}$ from the following data: $\mathrm{r}_{12}=0.8, \mathrm{r}_{13}=0.4$ and $\mathrm{r} 23=0.5$.	5
3	54.	Calculate coefficient of multiple correlations $\mathrm{R}_{1.23}, \mathrm{R}_{2.13}$ and $\mathrm{R}_{3.12}$ from the following data: $\mathrm{r}_{12}=.98, \mathrm{r}_{13}=.44 \text { and } \mathrm{r} 23=.54$	5
3	55.	Calculate coefficient of multiple correlations $\mathrm{R}_{1.23}, \mathrm{R}_{2.13}$ and $\mathrm{R}_{3.12}$ from the following data: $\mathrm{r}_{12}=.9, \mathrm{r}_{13}=.65 \text { and } \mathrm{r} 23=.6 .$ Given $\mathrm{r}_{12}=.9, \mathrm{r}_{13}=.4$ and $\mathrm{r} 23=.6$ find multiple correlation coefficient $\mathrm{R}{ }_{1.32}$	5
4	56.	Distinguish between one-way and two-way analysis of variance.	5
4	57.	Write a short note on non-parametric tests.	
4	58.	State the uses of non-parametric tests.	
4	59.	Write a note on Wilcoxon's signed-rank test.	
4	60.	Briefly explain Mann-Whitney U - Test.	
4	61.	Write a short note on Kruskal Wallis H-Test.	
4	62.	Write a short note on degree of freedom.	
4	63.	State the properties of x^{2} distribution.	
4	64.	Describe the uses of x^{2} test.	
4	65.	Describe the null and alternative hypotheses.	5
4	66.	Distinguish between one tailed test and two tailed tests.	5
4	67.	What do you mean by Type I and Type II errors in the testing of hypotheses?	5
4	68.	How will you decide whether to use Z-test or t-test while testing a hypothesis	5

		about population mean?	
1	69.	Explain the salient features of binomial distribution. State the conditions under which the distribution is used	10
1	70.	A committee of 4 members has to be formed from among 3 economist, 4 engineers, 2 statisticians and a doctor. (a) What is the probability that each of the 4 profession is represented in the committee? (b) What is the probability that the committee consists of a doctor and at least one economist?	10

		employees report for duty on a given day, what is the probability that: (a) Exactly 3 employees are late (b) At most 3 employees are late (c) At least 3 employees are late.						
1	78.	After the privatization of power sector in Delhi, consumers often complain that new meters installed by the private power companies are defective and run faster. On rigorous testing of meters, it was found that 10% is defective. In a group housing society, a test check was conducted on 6 meters, what is the probability that (i) one meter is defective (ii) at least one meter is defective?						10
1	79.	The probability that a student will graduate is 0.4 . Determine the probability that out of 5 students: (a) none (b) 1 (c) At least 1 and (d) All will graduate.						10
1	80.	It is believed that 20% of the employees I an office are usually late. If 10 employees report on duty on a given date what is the probability that: (a) Exactly 3 employees are late (b) At most 3 employees are late (c) At least 3 employees are late.						10
1	81.	As a result of a certain experiment, the data obtained was: Fit a binomial distribution to the above data.						10
1	82.	Four coins were tossed 200 times. The number of toss showing $0,1,2,3$ and 4 heads were as under. Fit a binomial distribution.						10
1	83.	Fit a binomial distrib	n to 2 34	fol 3 35				
1	84.	4 unbiased coins are tossed 256 times. Find the frequencies of the distribution of heads and tabulate the result. Calculate mean and standard deviation of number of heads.						
1	85.	A coin is tossed 5 times. What is the probability of? (a) obtaining exactly 3 heads (b) at least 2 heads (c) less than two heads?						
1	86.	Bird menace in the vicinity of airports in India has assumed alarming proportions for the safety of aero planes. The Airport Authority of India has taken a number of steps to check this problem and this has shown satisfactory results. However, still an average of 2 bird hits occurs a year. Assuming that bird hits follow a poisson distribution, calculate the probability						

		i. No aeroplane was hit by birds ii. One bird hit iii. Two bird hits iv. 3 aeroplanes were hit by birds v. 4 aeroplanes were hit by birds $\left(\right.$ Given $\left.\mathrm{e}^{-2}=0.1353\right)$							
1	87.	A manufacturer who produced medicine bottles, finds that 0.1% of the bottles are defective. The bottles are packed in boxes containing 500 bottles. A drug manufacturer buys 100 boxes from the producer of bottles. Using Poisson distribution find out how many boxes will contain (i) no defectives (ii) at least 2 defectives (Given $\mathrm{e}^{-0.5}=0.6065$)							
1	88.	Assuming that the typing m poisson distribution, find distribution of typing mista	$\begin{gathered} \text { kes p } \\ \text { e exp } \\ \hline 0 \\ \hline 40 \\ \hline \end{gathered}$	age d 1		d by s $\frac{3}{15}$	pist the $\begin{gathered} \hline 4 \\ \hline 10 \\ \hline \end{gathered}$	llows a lowing	10
1	89.	Fit a poisson distribution to	$\begin{gathered} \hline \text { follov } \\ \hline 0 \\ \hline 109 \\ \hline \end{gathered}$	dat 1 65	22	3			10
1	90.	Fit a poisson distribution to	follow 0 122	: 1 60	2	3			10
1	91.	The distribution of number of road accidents per day follows a poisson with mean 4 . Find the number of days out of 100 when there will be: (a) no accidents (b) at least two accidents (c) at the most three accidents and (d) between two and five accidents.							10
1	92.	The distribution of typing distribution:	akes i 0 142	$\begin{aligned} & \text { bool } \\ & \frac{1}{56} \\ & \hline \end{aligned}$	giv	belo 3 27	$\overline{\text { Fit th }}$ 4 5	$$	10
1	93.	Below are given the number years	$\begin{gathered} \hline 0 \\ \hline 59 \\ \hline \end{gathered}$	$\begin{array}{r} 1 \\ \hline 27 \end{array}$	$\begin{array}{r} \hline \mathrm{gi} \\ \hline 2 \\ \hline 9 \end{array}$	$\begin{array}{r} \hline \text { dep } \\ \hline 3 \\ \hline 1 \end{array}$	$\begin{aligned} & \text { hent } \\ & \hline \mathbf{T o} \\ & \hline 9 \end{aligned}$	$\text { ring } 96$	10

1	94.	One hundred car stereos are inspected and the number of defects is noted below. Fit a poisson distribution:						10
		No. of defects	0	1	2	3	4	
		No. of sets	79	8	2	1	0	
1	95.	In a book of 325 pages following mistakes per page were noted below. Fit a poisson distribution and apply test of goodness of it.						10
		Mistakes 0	1	2	3	4	Total	
		Pages 211	90	19	5	0	325	
1	96.	The scores in an under-graduate class of first were found to be normally distributed with mean 60 and standard deviation 10. If a student from this class is selected at random, find the probability that: (a) The student scored between 60 and 80 marks (b) The student got between 50 and 60 marks (c) The student got between 40 and 70 marks (d) The student got above 85 marks						
1	97.	Delhi's traffic police claims that whenever any rally is organized in the city, traffic in the city is seriously disrupted. On the day of rally, city's traffic is disrupted for about 3 hours (180 minutes) on an average with a standard deviation of 45 minutes. It is believed that the disruption of traffic is normally distributed. If on a certain day, a rally is organized in the city what is the probability that: (a) Traffic was disrupted up to 2 hours (b) Traffic was disrupted up to 5 hours (c) Traffic remained disrupted between 1 to 4 hours						10
1	98.	A hospital specialized in heart surgery and other allied treatments. During the previous year, 1800 patients were admitted for treatment and the average payment made by a patient was Rs. $1,20,000$ with a standard deviation of Rs. 25,000. Find: (a) The number of patients who paid between Rs. $1,00,000$ to Rs. 1,50,000 (b) The probability that a patient's bill exceeds Rs. $1,75,000$.						10
1	99.	Southern Bank Limited is reviewing its service charges and interest paying policies on saving accounts. The average daily balance on savings accounts is Rs. 10,000 with a standard deviation of Rs. 2,500 . In addition, the average daily balances are normally distributed. (i) What percentage of savings account customers carry daily balance in excess of Rs 15,000 ? (ii) What percentage carry average daily balance below Rs. 3,000? (iii) What percentage carry average daily balances between Rs. 4,000 to Rs. 14,000 ?						10
1	100.	The marks obtained in certain examination follow normal distribution with mean 45 and standard deviation 10. If 1000 students appeared at the examination, calculate the number of students scoring (i) less than 40 marks and (ii) more than 60 marks.						10
1	101.	The mean and standard deviation of wages of 6,000 workers engaged in a factory are Rs. 1,200 and Rs. 400 respectively. Assuming the distribution to be normal, estimate:						10

		(i) Percentage of workers getting wages above Rs. 1,600 (ii) Number of workers getting wages between Rs. 1,200 and Rs. 900 (iii) Number of workers getting wages between Rs. 1,200 and Rs. 1,400								
1	102.	The weekly wages of 2000 workers are normally distributed. Its mean and standard deviation are Rs. 140 and Rs. 10 respectively. Estimate the number of workers whose weekly wages will be (i) between Rs. 120 and Rs. 130 (ii) more than Rs. 170 (iii) less than Rs. 165.								10
1	103.	The customer accounts at a certain departmental store have an average balance of Rs. 480 and a standard deviation of Rs. 160. Assuming that the account balances are normally distributed (i) What proportion of the accounts is over Rs. 600? (ii) What proportion of the accounts is between Rs. 400 and Rs. 600? (iii) What proportion of the accounts is between Rs. 240 and Rs. 360?								10
1	104.	The mean and standard deviation of marks in the language paper in B.A. (programme) $1^{\text {st }}$ year were 35 and 10 respectively in a particular college. If a random sample of 49 students is drawn to construct a sampling distribution of mean (i) what will be mean and standard error of the sampling distribution? (ii) What proportion of sample means is between 32 and 39 marks? (iii) What is the probability that the mean of a single sample is greater than 39? (iv) less than 32 ?								10
1	105.	The strength of the wire produced by company X has a mean of $4,500 \mathrm{~kg}$ and a standard deviation of 200 kg . Company Y has a mean of $4,000 \mathrm{~kg}$ and a standard deviation of 300 kg . If 50 wires of company X and 100 wires of company Y are selected at random and tested for strength, what is the probability that the sample mean strength of X will be at least 600 kg more than that of Y?								10
1	106.	In a particular area of a metropolitan city, 3 percent of the population is suffering from T.B. If a random sample of 500 residents of this area is taken, what is the probability that the proportion of T.B. patients is between 2 percent to 3.5 percent?								10
1	107.	It is believed that 40% of the population in Mysore is illiterate and 30% of the population of old Mysore is illiterate. A random sample of 600 is taken from the Mysore and 110 of them are found to be illiterate whereas a sample of 600 is taken from old Mysore and 208 are found to be illiterate. Find the probability of drawing two samples with a different in the two sample proportions greater than what is observed.								10
1	108.	Explain the concept of Central Limit theorem.								10
2	109.	Fit a trend line to	$\frac{\frac{e \text { follo }}{2005}}{30}$	$\frac{\mathrm{ng} \text { dal }}{\frac{2006}{32}}$	$\frac{\frac{b y}{} \text { fre }}{\frac{2007}{38}}$	$\frac{\text { hand }}{\frac{2008}{35}}$	$\frac{\text { raphic }}{2009}$	$\frac{\text { metho }}{\frac{2010}{38}}$	$\begin{array}{\|c\|} \hline 2011 \\ \hline 42 \end{array}$	10

2	110.	Fit a trend line to the following data by free-hand graphic method:										10
		Years			1972	1973		1974	1975	1976		
		Sales			64	82		97	71	78		
2	111.	Fit a trend line by the method of semi averages to the following data:										10
		Year		2004	2005	2006	2007	2008	2009	2010	2011	
		Outputs (in units)		70	65	82	85	93	90	96	100	
2	112.	Fit a trend line by the method of semi averages to the following data:										10
		Year		1991	1992	1993	1994	1995	1996	1997	1998	
		Outputs units)		102	105	104	110	93	156	90	100	
2	113.	Calculate trend by using three-yearly moving average from the following time series										10
		Years	2002	2003	2004	2005	2006	2007	2008	2009	2010	
		$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Output } \\ \text { (Rs.) } \end{array} \\ \hline \end{array}$	50	53	57	54	51	60	65	73	70	
2	114.	Find the trend values from the following data using four yearly moving averages:										10
		Years Output (Rs.)	2003	2004	2005			$\frac{2008}{30}$	$\begin{array}{\|c} \hline 2010 \\ \hline 35 \\ \hline \end{array}$		$\begin{gathered} \hline 2012 \\ \hline 40 \end{gathered}$	
			18		22							
2	115.	Find the trend values from the following data using four yearly moving averages:										10
		Years Output (Rs.)	2001	$\begin{array}{c\|} \hline 2002 \\ \hline 31 \\ \hline \end{array}$	2003	47	-	6-2007	$\begin{array}{\|c\|} \hline 2008 \\ \hline 36 \\ \hline \end{array}$	2009	2010	
			28		32			0			50	
2	116.	Given be certain fir Fit a straig	ow is m: s uction ht-line t	he time rend by	$\begin{aligned} & \text { e series } \\ & \begin{array}{\|c\|} \hline 2003 \\ \hline 42 \\ \hline \text { least sqı } \end{array} \end{aligned}$	are met	n prod2005 62	$\begin{aligned} & \text { luction (} \\ & \hline \\ & \hline 2006 \\ & \hline 75 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { in thous } \\ & \hline 2007 \\ & \hline 92 \\ & \hline \end{aligned}$	and u 2008 122	its) of a	10
2	117.	Fit a straight-line trend to the following data by least square method:										10
		Years		$\begin{array}{c\|} \hline 2003 \\ \hline 18 \\ \hline \end{array}$	2004	2005	$\begin{array}{c\|} \hline 2006 \\ \hline 27 \\ \hline \end{array}$	$\begin{gathered} 2007 \\ \hline 16 \end{gathered}$	$\begin{gathered} \hline 2008 \\ \hline 21 \\ \hline \end{gathered}$	2010 23	2011	
		Producti									19	
		Estimate the trend for the year 2009 and 2012.										
2	118.	Fit a parabolic trend to the data given below and show the trend line by a graph also:										10
		Year			20		200		08 200	009	2010	
		Prod thou	luction sand R		8		12			7	8	
2	119.	Compute a non-linear trend for the data showing the production of what in 000 tonnes during the year 2003-2011.										10
		Years	2003		2005	2006	2007	2008	2009	2010	2011	
		$\begin{aligned} & \hline \text { Producti } \\ & \text { on of } \\ & \text { wheat } \\ & \hline \end{aligned}$	9	10	12	15	13	10	8	16	15	

		$\begin{array}{\|l} \hline(000 \\ \text { tonnes }) \end{array}$										
2	120.	Compute a non-linear trend for the data showing the production of what in 000 tonnes during the year 2002-2010.										10
		Years	2002		200 4	$\begin{gathered} 200 \\ 5 \end{gathered}$	$\begin{gathered} 200 \\ 6 \end{gathered}$	200 7	$\begin{gathered} 200 \\ 8 \end{gathered}$	200 201 9 0		
		Productio n of whea (000 tonnes)	19	20	32	25	23	12	8	15	14	
2	121.	Compute the season index numbers applying this simple average method for the following data:										10
		Year	Summer	Monsoon			Autumn			Winter		
		2006	112	110			120			115		
		2007	80	145			105			90		
		2008	95				140			80		
		2009	110	10090			130			110		
		2010	85	110			110			90		
		2011	94	120			100			85		
2	122.	Compute the season index numbers applying this simple average method for the following data:										10
		Year	Summer	Monsoon			Autumn			Winter		
		2007	100	120			130			105		
		2008	180	135			115			80		
		2009	85	110			130			70		
		2010	120	70			120			80		
		2011	95	120			120			70		
		2012	84	110			100			95		
2	123.	Calculate the quarterly seasonal indices in respect of the following data by using simple average method.										10
		using simple average method. Quarters										
		Year	I	II			III	IV				
		2006	71	68			79	71				
		2007	76	69			82	74				
		2008	74	66			84	80				
		2009	76				84	78				
		2020	78	74		86		82				

2	124.	Find out seasonal indices from the following data by using the Ratio-tomoving average method.					10
		Years	Quarters				
			I	II	III	IV	
		2006	19	22	24	19	
		2007	19	23	25	20	
		2008	18	22	21	18	
		2009	18	20	23	20	
		2010	21	24	23	20	
2	125.	Calculate seasonal indices by Ratio to Trend method from the following					10
		Year	Quarterly Sales				
			I	II	III	IV	
		2006	42	38	39	33	
		2007	49	44	46	49	
		2008	72	62	63	67	
		2009	80	73	72	75	
		2010	100	76	74	86	
2	126.	Calculate seasonal indices by Ratio to Trend method from the following data:					10
		Year					
			I	II	III	IV	
		2007	40	37	56	45	
		2008	45	58	63	39	
		2009	63	62	78	65	
		2010	87	78	79	62	
		2011	110	66	66	85	
3	127.	Define multiple regression analysis and multiple correlations analysis. Distinguish between them giving suitable examples.					10
3	128.	Distinguish between simple, partial and multiple correlation.					10
3	129.	On the basis of the following information compute $\mathrm{r}_{12.3}, \mathrm{r} 23.1$ and r 13.2. Given $\mathrm{r}_{12}=.86, \mathrm{r}_{13}=.65$ and $\mathrm{r}_{23}=.72$.					10
3	130.	On the basis of the following information compute $\mathrm{r}_{12.3}, \mathrm{r}_{23.1}$ and r 13.2 . Given $\mathrm{r}_{12}=.59, \mathrm{r}_{13}=.46$ and $\mathrm{r}_{23}=.77$.					10
3	131.	The simple coefficient of correlation between temperature (X_{1}), corn yield $\left(\mathrm{X}_{2}\right)$ and rainfall $\left(\mathrm{X}_{3}\right)$ are $\mathrm{r}_{12}=0.59, \mathrm{r}_{13}=0.46$ and $\mathrm{r}_{23}=0.77$. Calculate partial correlation coefficients $\mathrm{r}_{12.3}, \mathrm{r}_{13.2}$ and $\mathrm{r}_{23.1}$ and multiple correlation coefficients $\mathrm{R}_{1.23}, \mathrm{R}_{2.13}$ and $\mathrm{R}_{3.12}$.					10

Note: The attached question paper is to be taken as model question paper and all the M. Com I semester Question papers will have the similar pattern.

Q.P Code:53005

St. Philomena's College (Autonomous) Mysore I Semester M.Com Final Examination December 2019
 Subject: COMMERCE
 Title: STATISTICS FOR BUSINESS DECISIONS (SC)

Time: 3 Hours
Max Marks: 70

PART - A

Answer any Five of the following questions. Each question carries 5 Marks
1 State the features and limitations of Binomial and Poisson distributions.
2 If 2% of the electric bulbs manufactured by a company are defective.
Find the probability that in a sample of 200 bulbs
(a) at least one defective (b) at most 3 defectives and (c) exactly 4 defectives.

3 What is sampling? Describe its advantages and disadvantages.
4 Fit a straight line trend for the following series. Estimate the value for 2020.

Year	2012	2013	2014	2015	2016	2017	2018
Production	60	72	74	65	82	85	95

5 What do you mean by time series? Explain its usefulness in business.
6 Distinguish between secular trend, seasonal variations and cyclical fluctuations.
7 What is multiple regression analysis? What are its objectives?
8 Given: $R_{12}=0.69, R_{13}=0.55$ and $R_{23}=0.68$ find multiple correlation co-efficient

$$
R_{3,1,2} \text { and } R_{1,2,3}
$$

PART - B

Answer any Three questions. Each question carries 10 Marks
9 What is probability? Explain the different approaches available for the study of probability.
10 Suppose that a doorway being constructed is to be used by a class of people whose heights are normally distributed with mean 70 inches and standard deviation 3 inches. How much high the door way should be, without causing more than 25% of the people to bump their heads? If the height of the door may be fixed at 76 inches, how many persons out of 5,000 are expected to bump their heads?

11 Explain the probability sampling methods, their advantages and limitations.
12 Obtain the seasonal indices from the following data:
Production (in thousand units)

Year	I Quarter	II Quarter	III Quarter	VI Quarter
$\mathbf{2 0 1 4}$	25	30	21	32
$\mathbf{2 0 1 5}$	27	28	25	34
$\mathbf{2 0 1 6}$	22	27	21	30
$\mathbf{2 0 1 7}$	24	25	20	33

13 Given the following data, find the regression equation of X_{1} on X_{2} and X_{3}.
Variable X_{1} : 11172628
$\begin{array}{lllll}\text { Variable } X_{2}: 2 & 4 & 8 & 18\end{array}$
Variable $X_{3}: 2 \quad 3 \quad 4 \quad 5$
PART - C

Case Study (Compulsory)

14. The following figures represent the number of units of production per day turned out by four different workers using four different types of machines.

Workers	Machine Type			
	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}
$\mathbf{1}$	4	5	3	7
$\mathbf{2}$	6	8	6	5
$\mathbf{3}$	7	6	7	8
$\mathbf{4}$	3	5	4	8

On the basis of this information, can it be concluded that
a) The mean productivity is the same for different machines? and
b) The workers do not differ with regard to their productivity?

