ST. PHILOMENA'S COLLEGE (AUTONOMOUS), MYSORE

PG DEPARTMENT OF COMMERCE

QUESTION BANK (Revised LOCF - 2021)

FIRST YEAR- FIRST SEMESTER (2021 Batch)

QP Code: 83131

COURSE TITLE (PAPER TITLE): STATISTICS FOR BUSINESS DECISIONS

UNIT	Sl. No	QUESTIONS	MARKS
1	1.	Define independent and mutually exclusive events with examples.	5
1	2.	Define probability and explain briefly the importance of this concept in	5
		managerial decision making.	
1	3.	What is binomial distribution and what are its main characteristics?	5
1	4.	Write a note on binomial distribution.	5
1	5.	Discuss the salient features of binomial distribution.	5
1	6.	What is poisson distribution? Give the condition under which poisson	5
		distribution is applicable.	
1	7.	Write a note on poisson distribution.	5
1	8.	What are the characteristics of poisson distribution?	5
1	9.	What is poisson distribution? State the assumptions of poisson distribution.	5
1	10.	State the importance of poisson distribution.	5
1	11.	Define normal distribution. What are its main characteristics?	5
1	12.	State the important properties of normal probability distribution.	5
1	13.	Briefly explain the concept of probability distribution. State the	5
		characteristics of normal distribution.	
1	14.	Write a short note on sampling distribution of mean.	5
1	15.	Briefly explain the concept of standard error.	5
1	16.	State the qualities of a good sample.	5
1	17.	Write a note on probability and non-probability sampling.	5
1	18.	Write a note on stratified sampling.	5
1	19.	Write a note on cluster sampling.	5
1	20.	Write a short note on convenience sampling.	5
1	21.	A bag contains 4 white, 5 red and 6 green balls. 3 balls are drawn at random.	5
		What is the probability that a white, a red and the green ball aredrawn?	
1	22.	A bag contains 5 red and 6 black balls. 5 balls are drawn at random. What is	5
		the probability that drawn balls comprise 3 red and 2 black balls?	
1	23.	A bag contains 8 red balls and 5 white balls. Two successive draws are made	5

	without replacement. Find the probability that the first drawing will give 3	
24.		5
25.		5
201		C
26		5
20.		5
27		5
27.		5
28		5
28.		5
29.		5
	the probability of defective in a sample of 100 bulbs (i) None is defective (ii)	
	5 bulbs are defective (Given $e^{-5} = .007$)	
30.	If 20% of the bolts produced by a machine are defective; determine the	5
	probability that of 4 bolts chosen at random (a) one is defective (b) at the	
	most 2 bolts are defective.	
31.	A production engineer finds that an engineer mechanic working in a machine	5
	shop completes a certain task are approximately distributed with a mean 15	
	minutes, standard deviation of 3 minutes. Find the probability that the task is	
	completed (a) in less than 8 minutes (b) between 10 and 12 minutes.	
32.	Suppose in the admission test conducted by a management institute, the	5
	scores obtained by the applicants are normally distributed with mean 200 and	
	standard deviation is 45. If a sample of 150 scores is taken, what is the	
	probability that the sample mean will be lying between 190 and 208.	
33.	Suppose the distribution of monthly salary of bank employees is skewed	5
	negatively. This distribution has a mean of Rs. 19,000 per month and a	
	_	
		5
34.	The strength of the wire produced by company X has a mean of 4,500 kg and	5
	25. 26. 27. 28. 29. 30. 31. 32.	 Find the probability of drawing (a) a rupee coin, (b) Three-rupeecoin (c) Three coins one of each type. 25. Four coins are tossed at a time. What is the probability of getting (i) 2 heads and 2 tails (ii) Atleast two heads? 26. Out of 2000 families with four children each, how many would you expect to have (a) at least one boy (b) at least 2 boys. 27. It is known from the past experience that in a certain factory 3% products are defective. A sample of 100 items is taken at a random. Find the probability that exactly 5 products are defective (Given e ⁻³ = 0.4979). 28. A box contains 100 transistors, 20 of which are defective, 10 are selected at random for inspection. What is the probability that (i) all are defective (ii) at least one is defective? 29. If 5% of the electric bulbs manufactured by a company are defective. Find the probability of defective in a sample of 100 bulbs (i) None is defective (ii) 5 bulbs are defective (Given e ⁻⁵ = .007) 30. If 20% of the bolts produced by a machine are defective; determine the probability that of 4 bolts chosen at random (a) one is defective (b) at the most 2 bolts are defective. 31. A production engineer finds that an engineer mechanic working in a machine shop completes a certain task are approximately distributed with a mean 15 minutes, standard deviation of 3 minutes. Find the probability that the task is completed (a) in less than 8 minutes (b) between 10 and 12 minutes. 32. Suppose in the admission test conducted by a management institute, the scores obtained by the applicants are normally distributed with mean 200 and standard deviation is 45. If a sample of 150 scores is taken, what is the probability that the sample mean will be lying between 190 and 208.

		and give uses o	f time series ana	llysis.		
2	42.	What do you u	inderstand by a	time series? Explain i	ts various components	5
-				in a time series.		2
2	41.		series? What a	re its main component	s? Discuss the various	5
2	40.	Distinguish be fluctuations.	eiween secular	trena, seasonal va	riations and cyclical	5
				of time series? Briefly	_	_
2	39.	than Rs. 47.	ain componente	of time sories? Driefly	avalain	5
			bability that the d	aily mean wages of work	ters in North India is less	
				into a standardized norm		
		North India and				
		It is presumed the	nat there is no dif	ference between the mea	n wage of all workers in	
		South India	1500	Rs. 49	Rs. 40	
		North India	1000	Rs. 47	Rs. 28	
			workers		standard deviation	
			Number of	Daily mean wage	Population	
		following table	:			
1	38.	Salary distribu	tion of workers	s in North and South	India is given in the	5
		taken and comp	pare it when the	sample size is increased	d to 70 chains.	
		standard error of	of the sampling	distribution of mean if	a sample of 9 chains is	
			-		is 25 grams. Find the	
1	37.				ght of all the chains is	5
			ater than what is	•		
			•		ice in the two sample	
					o be illiterate. Find the	
		1 1	·		erate whereas a sample	
1	50.				sample of 500 is taken	5
1	36.	percent to 3.5 p		population in Musoro	s illiterate and 40% of	5
		-	•	ne proportion of T.B.	patients is between 2	
		Ũ			nts of this area is taken,	
1	35.	-			nt of the population is	5
		than that of Y?				
		probability that	the sample me	an strength of X will b	e at least 600 kg more	
		company i ai	e selected at r	andom and tested for	suchgui, what is the	
		Compony V or	1 , 1 ,		strength what is the	

2	43.	Explain seasonal variations in a time series. Mentions the various methods of	5
		determining it.	
3	44.	Write a note on parametric tests.	5
3	45.	State the uses of parametric tests.	5
3	46.	Distinguish between parametric and non-parametric tests.	5
3	47.	Write a note on multiple correlation.	5
3	48.	What is multiple correlation and state its assumptions.	5
3	49.	Write a short note on partial correlation.	5
3	50.	State the limitations of partial correlation.	5
3	51.	State the objectives of multiple regression analysis.	5
3	52.	On the basis of the following information compute:	5
		(i) r _{23.1} (ii) r _{13.2} (iii) r _{12.3}	
		$r_{12} = 0.50, r_{13} = 0.4, r_{23} = 0.1$	
3	53.	Calculate coefficient of multiple correlations R 1.23, R 2.13 and R 3.12 from the	5
		following data:	
		$r_{12}=0.8$, $r_{13}=0.4$ and $r_{23}=0.5$.	
3	54.	Calculate coefficient of multiple correlations R 1.23, R 2.13 and R 3.12 from the	5
		following data:	
		$r_{12}=.98$, $r_{13}=.44$ and $r_{23}=.54$.	
3	55.	Calculate coefficient of multiple correlations R 1.23, R 2.13 and R 3.12 from the	5
		following data:	
		$r_{12}=.9$, $r_{13}=.65$ and $r_{23}=.6$.	
		Given r $_{12}$ =.9, r $_{13}$ =.4 and r 23=.6 find multiple correlation coefficient R $_{1.32}$	
4	56.	Distinguish between one-way and two-way analysis of variance.	5
4	57.	Write a short note on non-parametric tests.	
4	58.	State the uses of non-parametric tests.	
4	59.	Write a note on Wilcoxon's signed-rank test.	
4	60.	Briefly explain Mann-Whitney U – Test.	
4	61.	Write a short note on Kruskal Wallis H – Test.	
4	62.	Write a short note on degree of freedom.	
4	63.	State the properties of x ² distribution.	
4	64.	Describe the uses of $x^{2 \text{ test}}$.	
4	65.	Describe the null and alternative hypotheses.	5
4	66.	Distinguish between one tailed test and two tailed tests.	5
4	67.	What do you mean by Type I and Type II errors in the testing of hypotheses?	5
4	68.	How will you decide whether to use Z-test or t-test while testing a hypothesis	5

		about population mean?	
			10
1	69.	Explain the salient features of binomial distribution. State the conditions	10
		under which the distribution is used	
1	70.	A committee of 4 members has to be formed from among 3 economist, 4	10
		engineers, 2 statisticians and a doctor.	
		(a) What is the probability that each of the 4 profession is represented in the	
		committee?	
		(b) What is the probability that the committee consists of a doctor and at least	
		one economist?	
1	71.	A bag contains 8 red and 5 white balls. Two successive drawings of 3 balls	10
		are made such that	
		(i) balls are replaced before the second trial,	
		(ii) the balls are not replaced before the second trial.	
		Find the probability that the first drawing will give 3 white and the second 3	
		red balls.	
1	72.	Four cards are drawn from a full pack of cards. Find the probability that	10
		(a) There is one card of each suit	
		(b) Two cards are spades and two are hearts	
		(c) All the four are kings	
		(d) All the four are spades and one of them is king.	
1	73.	A committee of 4 persons is to be appointed from 3 officers of the	10
		production department, 4 officers of purchase department, 2 officers of the	
		sales department and a chartered accountant. Find the probability of forming	
		the committee in the following manner:	
		(a) There must be one from each category	
		(b) It should at least have one from the purchase department	
		(c) The chartered accountant must be in the committee.	
1	74.	Two balls are drawn from a bag containing 8 red and 7 white balls. Find the	10
		probability that	
		(i) they are both red	
		(ii) they are both white	
		(iii) one is red and other is white.	
1	75.	A box contains 2 red, 3 black and 5 white balls. If 3 balls are drawn at	10
		random without replacement find the probabilities that (a) all 3 are black	
		(a) all 3 are white	
		(c) two are red and one black	
		(d) one of each color	
1	76.	It is believed that 50% students use Internet for academic purposes. In a	10
		sample of 4 students, calculate the probability:	
		(a) None of the students use Internet	
		(b) Only one student uses Internet	
		(c) Two students use Internet	
		(d) Three students use Internet	
		(e) All the four students use Internet	
1	77.	It is believed that 20% of the employees in an office are usually late. If 10	10

		 employees report for duty on a given day, what is the probability that: (a) Exactly 3 employees are late (b) At most 3 employees are late (c) At least 3 employees are late. 	
1	78.	After the privatization of power sector in Delhi, consumers often complain that new meters installed by the private power companies are defective and run faster. On rigorous testing of meters, it was found that 10% is defective. In a group housing society, a test check was conducted on 6 meters, what is the probability that (i) one meter is defective (ii) at least one meter is defective?	10
1	79.	The probability that a student will graduate is 0.4. Determine the probability that out of 5 students: (a) none (b) 1 (c) At least 1 and (d) All will graduate.	10
1	80.	It is believed that 20% of the employees I an office are usually late. If 10 employees report on duty on a given date what is the probability that: (a) Exactly 3 employees are late (b) At most 3 employees are late (c) At least 3 employees are late.	10
1	81.	As a result of a certain experiment, the data obtained was: X 0 1 2 3 4 f 8 32 34 24 5 Fit a binomial distribution to the above data.	10
1	82.	Four coins were tossed 200 times. The number of toss showing 0,1,2,3 and 4heads were as under. Fit a binomial distribution.No. of heads01234TotalNo. of tosses1535904020200	10
1	83.	Fit a binomial distribution to the following data: X 01234f1818343510	
1	84.	4 unbiased coins are tossed 256 times. Find the frequencies of the distribution of heads and tabulate the result. Calculate mean and standard deviation of number of heads.	
1	85.	 A coin is tossed 5 times. What is the probability of? (a) obtaining exactly 3 heads (b) at least 2 heads (c) less than two heads? 	
1	86.	Bird menace in the vicinity of airports in India has assumed alarming proportions for the safety of aero planes. The Airport Authority of India has taken a number of steps to check this problem and this has shown satisfactory results. However, still an average of 2 bird hits occurs a year. Assuming that bird hits follow a poisson distribution, calculate the probability	

		i. No aeroplane was hit b	w hirds						
		ii. One bird hit	by onds						
		iii. Two bird hits							
		iv. 3 aeroplanes were hit b	w hirds						
		v. 4 aeroplanes were hit							
		(Given $e^{-2} = 0.1353$)	by blids	5					
1	87.	, , , ,		diaina h	441	finds (hat 0 10	v of the	
1	07.	A manufacturer who product			,				
		bottles are defective. The bott						o bottles.	
		A drug manufacturer buys 100			-				
		Using Poisson distribution fin (i) no defectives (ii) at least 2							
1	88.							fallarua a	10
1	00.	Assuming that the typing mis	_			-			
		poisson distribution, find t	_	ected 1	requer	icies 10	r the I	onowing	,
		distribution of typing mistakes	5.						
			0	1	2	2	4	5	
		No. of mistakes per page	$\frac{0}{40}$	1 30	$\frac{2}{20}$	3 15	4 10	5	
		No. of pages(Value of $e^{-1.5} = 0.2231$	40	50	20	15	10	5	
		(Value of C = 0.2251							
1	89.	Fit a poisson distribution to th	e follow	ving dat	a:				10
		No. of mistakes per page	0	1	2	3	4		
		No. of pages	109	65	22	3	1		
		(Value of $e^{-0.61} = 0.543$)							
1	90.	Fit a poisson distribution to th	e follow	ving:					10
		Death	0	1	2	3	4		
		Frequency	122	60	15		1		
		$(e^{-5} = .6065)$	-	1			1		
1	91.	The distribution of number of	road a	ccidents	per da	ay follov	vs a pois	son with	10
		mean 4. Find the number of da	ays out	of 100 v	when th	nere will	be:		
		(a) no accidents							
		(b) at least two accidents							
		(c) at the most three accidents	and						
		(d) between two and five accid	dents.						
1	92.	The distribution of typing mis	stakes ir	ı a book	t is giv	en below	v. Fit the	e poisson	10
		distribution:		<u> </u>				<u>. </u>	
		No. of mistakes per page	0	1	2	3	4	5	
		No. of pages	142	156	69	27	5	1	
		(Value of $e^{-1} = .36788$)						11	
1	93.	Polow are given the number	of vege	noios ar	inina	n o domo	rtmont -	luring 06	10
1	73.	Below are given the number	or vacal	ncies ar	ising 1	n a uepa	runent o	iuring 90	10
		years No. of vacancies	0	1	2	3	Tot	al	
				1					
		Years	59	27	9	1	96)	
		(Value of $e^{-1} = .36788$)							

1	94.	One hundred car stereos are inspected and the number of defects is noted below. Fit a poisson distribution:	10
		No. of defects 0 1 2 3 4	
		No. of sets 0 1 2 3 4	
	0.7		10
1	95.	In a book of 325 pages following mistakes per page were noted below. Fit a	10
		poisson distribution and apply test of goodness of it.	
		Mistakes 0 1 2 3 4 Total	
		Pages 211 90 19 5 0 325	
1	96.	The scores in an under-graduate class of first were found to be normally	
		distributed with mean 60 and standard deviation 10. If a student from this	
		class is selected at random, find the probability that:	
		(a) The student scored between 60 and 80 marks	
		(b) The student got between 50 and 60 marks	
		(c) The student got between 40 and 70 marks	
		(d) The student got above 85 marks	
1	97.	Delhi's traffic police claims that whenever any rally is organized in the city,	10
-	,,,,	traffic in the city is seriously disrupted. On the day of rally, city's traffic is	10
		disrupted for about 3 hours (180 minutes) on an average with a standard	
		deviation of 45 minutes. It is believed that the disruption of traffic is	
		normally distributed. If on a certain day, a rally is organized in the city what	
		is the probability that:	
		(a) Traffic was disrupted up to 2 hours (b) Traffic was disrupted up to 5 hours	
		(b) Traffic was disrupted up to 5 hours(c) Traffic remained disrupted between 1 to 4 hours	
1	98.		10
1	90.	A hospital specialized in heart surgery and other allied treatments. During	10
		the previous year, 1800 patients were admitted for treatment and the average	
		payment made by a patient was Rs. 1,20,000 with a standard deviation of Rs.	
		25,000. Find:	
		(a) The number of patients who paid between Rs. 1,00,000 to Rs. 1,50,000	
1	00	(b) The probability that a patient's bill exceeds Rs. 1,75,000.	10
1	99.	Southern Bank Limited is reviewing its service charges and interest paying	10
		policies on saving accounts. The average daily balance on savings accounts	
		is Rs. 10,000 with a standard deviation of Rs. 2,500. In addition, the average	
		daily balances are normally distributed.	
		(i) What percentage of savings account customers carry daily balance in	
		excess of Rs 15,000?	
		(ii) What percentage carry average daily balance below Rs. 3,000?	
		(iii) What percentage carry average daily balances between Rs. 4,000 to Rs.	
	100	14,000?	10
1	100.	The marks obtained in certain examination follow normal distribution with	10
		mean 45 and standard deviation 10. If 1000 students appeared at the	
		examination, calculate the number of students scoring	
		(i) less than 40 marks and	
		(ii) more than 60 marks.	
1	101.	The mean and standard deviation of wages of 6,000 workers engaged in a	10
		factory are Rs. 1,200 and Rs. 400 respectively. Assuming the distribution to	
		be normal, estimate:	

		(i) Percentage of workers getting wages above Rs. 1,600	
		(ii) Number of workers getting wages between Rs. 1,200 and Rs. 900	
		(iii) Number of workers getting wages between Rs. 1,200 and Rs. 1,400	
1	102.	The weekly wages of 2000 workers are normally distributed. Its mean and standard deviation are Rs. 140 and Rs. 10 respectively. Estimate the number of workers whose weekly wages will be (i) between Rs. 120 and Rs. 130 (ii) more than Rs. 170 (iii) less than Rs. 165.	10
1	103.		10
1	103.	The customer accounts at a certain departmental store have an average balance of Rs. 480 and a standard deviation of Rs. 160. Assuming that the account balances are normally distributed (i) What proportion of the accounts is over Rs. 600? (ii) What proportion of the accounts is between Rs. 400 and Rs. 600? (iii) What proportion of the accounts is between Rs. 240 and Rs. 360?	10
1	104.	The mean and standard deviation of marks in the language paper in B.A.	10
		 (programme) 1st year were 35 and 10 respectively in a particular college. If a random sample of 49 students is drawn to construct a sampling distribution of mean (i) what will be mean and standard error of the sampling distribution? 	
		(ii) What proportion of sample means is between 32 and 39 marks?	
		(ii) What is the probability that the mean of a single sample is greater than	
		39?	
		(iv) less than 32?	
1	105.	The strength of the wire produced by company X has a mean of 4,500 kg and	10
		a standard deviation of 200 kg. Company Y has a mean of 4,000 kg and a	
		standard deviation of 300 kg. If 50 wires of company X and 100 wires of	
		company Y are selected at random and tested for strength, what is the	
		probability that the sample mean strength of X will be at least 600 kg more	
		than that of Y?	
1	106.	In a particular area of a metropolitan city, 3 percent of the population is suffering from T.B. If a random sample of 500 residents of this area is taken, what is the probability that the proportion of T.B. patients is between 2 percent to 3.5 percent?	10
1	107.	It is believed that 40% of the population in Mysore is illiterate and 30% of	10
		the population of old Mysore is illiterate. A random sample of 600 is taken	
		from the Mysore and 110 of them are found to be illiterate whereas a sample	
		of 600 is taken from old Mysore and 208 are found to be illiterate. Find the	
		probability of drawing two samples with a different in the two sample proportions greater than what is observed.	
1	108.	Explain the concept of Central Limit theorem.	10
2	100.	Fit a trend line to the following data by free-hand graphic method:	10
<u>ک</u>	109.	Fit a trend line to the following data by free-hand graphic method:Year 2005 2006 2007 2008 2009 2010 2011	10
		Teal 2003 2006 2007 2008 2009 2010 2011 Exports (in Rs. Crores) 30 32 38 35 39 38 42	

2	110.	Fit a trend	line to	the fo	llowing	data l	by fre	ee-ha	and gra	aphic m	ethod:		10
		Year	S		1972	1	973		1974	1975	19	976	
		Sales			64		82		97	71		78	
2	111.	Fit a trend	line by	the m	nethod c	of sem	i aver	rage	s to the	e follow	ring dat	a:	10
		Year		2004	4 2005	5 200	06 2	2007	200	8 200	9 201	0 2011	
		Outpu units)	uts (in	70	65	82	2	85	93	90	96	5 100	
2	112.	Fit a trend	line by	the m	nethod c	of sem	i aver	rage	s to the	e follow	ing dat	a:	10
		Year		1991	1992	1993		1994	199				
		Outputs units)	(in	102	105	104		110	93	156	5 90	100	
2	113.		2002	2003	2004	2005	5 20)06	2007	2008	2009	2010	g 10
		Output (Rs.)	50	53	57	54	5	51	60	65	73	70	
2	114.	Find the taverages:	$\frac{1}{2003}$	2004	from th	ne fol				-	r yearl		g 10
		Years Output (Rs.)	18	2004	2003	200			30		5 37		
2	115.	Find the t averages: Years Output (Rs.)	2001 28	2002 31		ne fol 2004 47	lowin 2005 55	ng d	06 20	ing fou 007 200 -8 30	08 2009	9 2010	g 10
2	116.	Given belo	n:	he tin			-						a 10
		Years			2003			2005	2006		2008	2009	
		Fit a straigh	uction nt-line t	rend by	42 V least sq	uare n		62 d.	75	92	122	158	
2	117.	Fit a straig							y least	square	method	1:	10
		Years		003	2004	2005	<u> </u>	06	2007	2008	2010	2011	
		Productio		18	21	23		.7	16	21	23	19	
		Estimate t	he tren	d for t	the year	2009	and 2	2012					
2	118.	Fit a paral		end to	the da	ta giv	en be	elow	and s	show th	e trend	line by	a 10
		graph also					•						
		Years				006		200		2008	2009	2010	
			uction and Rs			8		12	,	15	7	8	
2	119.	Compute a	a non-l	inear	trend fo	r the	data s	shov	ving th	ne produ	uction of	of what i	n 10
		000 tonnes							J	•			
		Years	2003	2004		2006		007	2008	2009	2010	2011	
		Producti on of wheat	9	10	12	15	1	3	10	8	16	15	

		(000									
		tonnes)									
2	120.		on-linear trend		ta showin	ng the pro	oduct	ion of	f wha	t in	10
			ring the year 2	2002-2010.				-		_	
		Years	2002	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{c c} 00 & 200 \\ 6 & 7 \end{array}$	200 8	200 9	201 0		
		Production n of when (000 tonnes)		20 32	25 23	23 12	8	15	14		
2	121.	Compute the	season index r	umbers ap	plying thi	is simple	avera	age m	ethod	for	10
		the following									
		Year	Summer	Mons	soon	Autum	n	W	inter		
		2006	112	11	0	120		1	115		
		2007	80	14		105			90		
		2008	95	10	0	140			80		
		2009	110	90		130			110		
			110 85 94	90 11 12	0	130 110 100			110 90 85		
2	122.	200920102011Compute thethe following	85 94 season index r data:	11 12 numbers ap	0 0 plying thi	110 100 is simple		age m	90 85 ethod	for	10
2	122.	200920102011Compute thethe followingYear	85 94 season index r data: Summer	11 12 numbers ap Mons	0 0 plying thi oon	110 100 is simple Autumn		age me Win	90 85 ethod nter	for	10
2	122.	200920102011Compute thethe followingYear2007	85 94 season index r data: Summer 100	11 12 numbers ap Mons 120	0 0 plying thi oon)	110 100 is simple Autumn 130		age ma Win	90 85 ethod nter	for	10
2	122.	2009 2010 2011 Compute the the following Year 2007 2008	85 94 season index r data: Summer 100 180	11 12 numbers ap Mons 120 13	0 0 plying thi oon 5	110 100 is simple Autumn 130 115		age ma Win 1(8	90 85 ethod nter 05 60	for	10
2	122.	2009 2010 2011 Compute the the following Year 2007 2008 2009	85 94 season index r data: Summer 100 180 85	11 12 numbers ap 120 133	0 0 plying thi oon 5)	110 100 is simple Autumn 130 115 130		age ma Win 1(8 7	90 85 ethod nter 05 30 70	for	10
2	122.	2009 2010 2011 Compute the the following Year 2007 2008 2009 2010	85 94 season index r data: Summer 100 180 85 120	11 12 numbers ap 120 133 110 70	0 0 plying thi oon 5 0 1 1 1 1 1 1 1 1 1 1 1 1 1	110 100 is simple Autumn 130 115 130 120		age ma Win 10 8 7 8	90 85 ethod nter 05 60 70 80	for	10
2	122.	2009 2010 2011 Compute the the following Year 2007 2008 2009 2010 2011	85 94 season index r data: Summer 100 180 85	11 12 numbers ap 120 133 110 70 120	0 0 plying thi oon 5 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	110 100 is simple Autumn 130 115 130		age ma Win 10 8 7 8 7 8 7	90 85 ethod nter 05 30 70	for	10
2	122.	2009 2010 2011 Compute the the following Year 2007 2008 2009 2010 2011 2012 Calculate the	8594season index r data:Summer100180851209584quarterly seas average metho	11 12 numbers ap Mons 120 133 110 70 120 110 0 110 0 110 0 110 0 110 0 110 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	110 100 is simple Autumn 130 115 130 120 120 120 100		age ma Win 1(8 7 8 7 9	90 85 ethod nter 05 30 70 30 70 25		10
		2009 2010 2011 Compute the the following Year 2007 2008 2009 2010 2011 2012 Calculate the using simple a	8594season index r data:Summer100180851209584quarterly seas average metho	11 12 numbers ap Mons 120 133 110 700 120 110 0 110 0 0 110 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	110 100 is simple Autumn 130 115 130 120 120 120 100 bect of the	e foll	age ma Win 1(8 7 8 7 9	90 85 ethod nter 05 30 70 30 70 25		
		2009 2010 2011 Compute the the following Year 2007 2008 2009 2010 2011 2012 Calculate the	8594season index r data:Summer100180851209584quarterly seas average metho	11 12 numbers ap Mons 120 133 110 70 120 110 0 110 0 110 0 110 0 110 0 110 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	110 100 is simple Autumn 130 115 130 120 120 120 100 bect of the		age ma Win 1(8 7 8 7 9	90 85 ethod nter 05 30 70 30 70 25		
		2009 2010 2011 Compute the the following Year 2007 2008 2009 2010 2011 2012 Calculate the using simple a	8594season index r data:Summer100180851209584quarterly seas average metho	11 12 numbers ap Mons 120 133 110 700 120 110 0 110 0 0 110 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	110 100 is simple Autumn 130 115 130 120 120 120 100 bect of the	e foll	age ma Win 1(8 7 8 7 9	90 85 ethod nter 05 30 70 30 70 25		
		2009 2010 2011 Compute the the following Year 2007 2008 2009 2010 2011 2012 Calculate the using simple a	85 94 season index r data: Summer 100 180 85 120 95 84 quarterly seas average metho	11 12 numbers ap Mons 120 133 110 70 120 133 110 700 120 110 0 0 10 0 0 110 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	110 100 is simple Autumn 130 115 130 120 120 120 100 bect of the	e foll	age ma Win 1(8 7 8 7 9	90 85 ethod nter 05 30 70 30 70 25		
		2009 2010 2011 Compute the the following Year 2007 2008 2009 2010 2011 2012 Calculate the using simple a Year 2006 2007 2008	85 94 season index r data: Summer 100 180 85 120 95 84 quarterly seas average metho 71 76 74	11 12 numbers ap Mons 120 133 110 70 120 133 110 700 120 110 70 120 110 70 120 110 70 120 110 60 68 69 66	0 0 0 0 0 0 0 0 0 0 0 0 0 0	110 100 is simple Autumn 130 115 130 120 120 120 100 bect of the	I e foll IV 71 74 80	age ma Win 1(8 7 8 7 9	90 85 ethod nter 05 30 70 30 70 25		
		2009 2010 2011 Compute the the following Year 2007 2008 2009 2010 2011 2012 Calculate the using simple a Year 2006 2007	85 94 season index r data: Summer 100 180 85 120 95 84 quarterly seas average metho 71 76	11 12 numbers ap Mons 120 133 110 70 120 110 70 120 110 0 100 0 110 0 110 0 0 110 0 0 0 110 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	110 100 is simple Autumn 130 115 130 120 120 120 100 bect of the	n e foll TV 71 74	age ma Win 1(8 7 8 7 9	90 85 ethod nter 05 30 70 30 70 25		

		moving average		~			
		Years		-	rters		
			I	II	III	IV	
		2006	19	22	24	19	
		2007	19	23	25	20	
		2008	18	22	21	18	
		2009	18	20	23	20	
		2010	21	24	23	20	
2	125.	Calculate sease data: Year	onal indices b		end method f	rom the following	10
		1 cai	Ι	<u> </u>	III	IV	
		2006	42	38	39	33	
		2000	49	44	46	49	
		2007	72	62	63	67	
		2009	80	73	72	75	
		2010	100	76	74	86	
2	126.		onal indices b	y Ratio to Tro	end method f	rom the following	10
2	126.	Calculate sease		Quarter	ly Sales		10
2	126.	Calculate sease data: Year	I	Quarter II	ly Sales III	IV	10
2	126.	Calculate sease data: Year 2007	I 40	Quarter II 37	ly Sales III 56	IV 45	10
2	126.	Calculate sease data: Year 2007 2008	I 40 45	Quarter II 37 58	ly Sales III 56 63	IV 45 39	10
2	126.	Calculate sease data: Year 2007 2008 2009	I 40 45 63	Quarter II 37 58 62	ly Sales III 56 63 78	IV 45 39 65	10
2	126.	Calculate sease data: 2007 2008 2009 2010	I 40 45 63 87	Quarter II 37 58 62 78	ly Sales III 56 63 78 79	IV 45 39 65 62	10
2	126.	Calculate sease data: Year 2007 2008 2009	I 40 45 63	Quarter II 37 58 62	ly Sales III 56 63 78	IV 45 39 65	10
2	126.	Calculate sease data: 2007 2008 2009 2010 2011	I 40 45 63 87 110	Quarter II 37 58 62 78 66 analysis and	ly Sales III 56 63 78 79 66 multiple corr	IV 45 39 65 62	10
		Calculate sease data: 2007 2008 2009 2010 2011 Define multip	I40456387110le regressionween them giv	Quarter II 37 58 62 78 66 analysis and ing suitable ex	ly Sales III 56 63 78 79 66 multiple cor amples.	IV 45 39 65 62 85	
3	127.	Calculate sease data: Year 2007 2008 2009 2010 2011 Define multip Distinguish bet Distinguish bet	I 40 45 63 87 110 le regression ween them giv ween simple, p	Quarter II 37 58 62 78 66 analysis and ing suitable ex partial and mult	ly Sales III 56 63 78 79 66 multiple cor amples.	IV 45 39 65 62 85 relations analysis. n.	10
3 3 3	127.	Calculate sease data: Year 2007 2008 2009 2010 2011 Define multip Distinguish bet Distinguish bet On the basis of Given r $_{12} = .86$	I40456387110le regressionween them givween simple, pof the followino, $r_{13} = .65$ and	QuarterII 37 58 62 78 66 analysis anding suitable expartial and multiple informationr $_{23} = .72.$	ly Sales III 56 63 78 79 66 multiple cor amples. tiple correlatio compute r 12	IV 45 39 65 62 85 relations analysis. n3, r 23.1 and r 13.2.	10
3	127.	Calculate sease data: Year 2007 2008 2009 2010 2011 Define multip Distinguish bet Distinguish bet On the basis of Given $r_{12} = .86$	I40456387110le regressionween them givween simple, pof the followin $5, r_{13} = .65$ andof the followin	QuarterII 37 58 62 78 66 analysis anding suitable expartial and multiple informationr $_{23} = .72$.ag information	ly Sales III 56 63 78 79 66 multiple cor amples. tiple correlatio compute r 12	IV 45 39 65 62 85 relations analysis. n.	10
3 3 3	127. 128. 129.	Calculate sease data: Year 2007 2008 2009 2010 2011 Define multiple Distinguish bet Distinguish bet On the basis of Given r $_{12} = .86$	I40456387110le regressionween them givween simple, pof the followin $6, r_{13} = .65$ andof the followin $0, r_{13} = .46$ and	QuarterII 37 58 62 78 66 analysis anding suitable expartial and multiple informationr $_{23} = .72$.ng informationr $_{23} = .77$.	ly Sales III 56 63 78 79 66 multiple cor amples. tiple correlation compute r 12 compute r 12	IV 45 39 65 62 85 relations analysis. n. 3, r 23.1 and r 13.2. 3, r 23.1 and r 13.2.	10 10 10
3 3 3 3	127. 128. 129. 130.	Calculate sease data: Year 2007 2008 2009 2010 2011 Define multiple Distinguish bet Distinguish bet On the basis of Given $r_{12} = .59$ The simple coordinates	I40456387110le regressionween them givween simple, pof the followin $5, r_{13} = .65$ andof the followin $0, r_{13} = .46$ andefficient of corr	QuarterII3758627866analysis anding suitable expartial and multipleinformationr $_{23} = .72$.and informationr $_{23} = .77$.rrelation between	Iy SalesIII 56 63 78 79 66 multiple correlationcompute r 12compute r 12compute r 12compute r 12	IV 45 39 65 62 85 relations analysis. n3, r 23.1 and r 13.2.	10 10 10 10

3	132.	house dispensary is disturbed because of the alarming rise in the cases of high blood pressure among young female employees. A study of high BP women employees revealed that two main factors cause high BP-work related stress and family related stress. The chief medical officer collected data for a period of five weeks that is written below. From these data calculate multiple regression equation of X_1 on X_2 and X_3 No. of female employees suffering from high BP- X_1 6052566468No. of female employees suffering from work related stress4741504240No. of female employees suffering from suffering from X_2 26181321Image: The following data calculate multiple regression line:ThuFri										10		
3	133.	From the	e follov	ving da	ta calcu	late m	nultiple	regress	sion lin	e:				10
		-						Tue	Wed	Thu		Fri		
		-			per day-	X_1	3	5	7	4		6		
		No. of v			y (in he		6 5	6 8	5	6		7 5		
		$-X_3$	suppry	per da	ay (in ho	jurs)	5	0	0	4		3		
3	134.	From the X_2 and X X_1 X_2 X_3 Also particular	K _{3:} 8 5 9	12 10 17	19 13 22	24 14 27	25 19 36	5 3 0 2 5 4	1 3 5 2 1 5	on equ 38 24 58	43 26 62	n of X ₁	on	
3	135.	Also esti Find the								the d	ata r	alatina	to	10
5	133.	three var X1: X2: X3:	-	given b		$\frac{25}{20}$		29 31 13	16 16 11	14 22 6	43			10
3	136.	Find the	-	-		-		X_1 on	X ₂ an	nd X ₃	fron	n the d	ata	10
		relating t				n belo	ow:							
				X 2	X 3	_								
		4		15 12	<u> </u>	-								
		7		8	20	-								
		9		6	14									
		13		4	10									
		15		3	4]								
		Also pre	dict the	e value	of X_1 w	hen X	$x_2 = 10$	and X	$_{3}=22.$					
					· · ·									

	137.	Find the mult relating of thr		-	-		1 on 2	X ₂ an	d X	3 from	m the	e data	
		X 1	X 2	X 3]								
		3	14	31									
		5	11	25									
		6	7	21									
		8	5	15									
		12	3	11									
		14	3	5									
4	138.	What is diffe		-			d non-	param	etric	tests	? De	scribe	10
4	139.	the various no	-				ontogo	c of	non 1	orom	otrio	tosts	10
-	137.	Discuss the compared to r		-		uisauv	antage	5 01	11011- <u>[</u>	Jaraff	icult	iests	10
4	140.	What do you				tical h	ypothe	sis? E	xplai	n the	proc	edure	10
		of hypothesis	testing.	•					-		<u> </u>		
4	141.	300 digits we								-			10
		given below.	-					-	ts we	re dis	tribu	ted in	
		equal number	- I	-	T - T		-	-	7	0	0		
		Digits Frequency	0 28	$\begin{array}{c c}1 & 2\\\hline 29 & 33\end{array}$	3	4 26		6 32 3	7 30	8 31	9 25		
4	142.	200 digits we given below.	Using > s in tab	x ² test, tes le. Given	st the h x 2 0.05	ypothe	esis that $9 = 16$	nt digit 9.92.		re dis	tribu	ted in	10
		Digits	0	$\frac{1}{10}$ 22	3	4	5	6	7	8		9	
		Frequency	20	19 23	41	16	45	37	20	11	3	5	
4	143.	100 digits we given below. equal number Digits	Using x	x ² test, tes	st the h x 2 0.05	ypothe 5 for V	esis tha	at digi	ts we	-			10
		Frequency	25	30 43	5 21	. 28	33	38	5	0	45	25	
			·	•	·	·							
4	144.	400 digits we given below. equal number	Using > s in tab	x ² test, tes le. Given	st the h x $^2 0.05$	ypothe 5 for V	esis that $9 = 16$	nt digit 9.92.	ts we	re dis	tribu	ted in	10
		Digits	0	1 2	3	4	5	6	7	8	9		
		Frequency	34	56 34	48	55	39	56	45	34	2	+	
4	1.4.5	A 1.13 -			1 0	4.4	. •.			1.14		.1	1.5
4	145.	A mobile pho modes: chequ of days three	les, crea	dit card ar	nd inter	rnet. It	collec	ted sa	mple	s of t	he ni	ımber	15
		of billing SM	S/bill. 7	The compa	any bel	ieves t	hat the	e three	sam	ples b	elow	have	
		been obtaine hypothesis at						-				t the	
							1				• • •		

		X 1		X 2		X 3					
		8		7		12					
		10		5		9					
		7		10		13					
		14		9		12					
4	146	11	1 .	9	C	14			N O		1.7
4	146.					-				ustomers are	
							4 grou	ips (A, E	3, C	and D) and	1
		brands (I, I Brands			Grou						
		Dranus	A		B	C		D			
		I	0		4	8		15			
		II	5	8	8	13		6			
		III	18	1	9	11		13			
4	147.							-		ent brands o	
								-	-	n for each o	
					Use 5	% level (or sign	inficance.	. Da	ta of weigh	l
		gain is mer									
		X 1 168		<u>X 2</u> 213			X 3			<u>4</u> 04	
		182		213			84			93	
		202	2	185		1	97		18	88	
		184	-	190		1	99		20	03	
4	148.	A company	y wants to	test the li	ife of f	our types	s of ty	res – A, I	B, C	, and D. The	e 15
						•		•		cars is given	
					-			e wheth	er t	here is any	ý
		difference						01		25	
		A	33	38		36	40	31		35	
		B	32	40		42	38	30		34	
		C D	<u>31</u> 29	37		35 32	<u>33</u> <u>30</u>	34		30 31	
			<i>43</i>	J ⁴		54	50			51	
4	149.	A firm use	d three di	fferent st	rategie	s of sale	es pror	notion du	aring	g the simila	r 15
		festival sea	son and n	oted the f	ollowin	ng sales:					
		S 1	12	14	14	12	2	20			
		S 2	21	15	17	1'	7	13			
		S 3	18	14	18	20	0	19			
		Test wheth	er the stra	tegies inf	luenceo	<u>d sal</u> es? I	<u>Use</u> sig	gnificanc	<u>e l</u> ev	vel at 0.05	
4	150.	Three train	ning metl	nods wei	re con	pared t	o see	if they	led	l to greate	r 15
		productivit	y after tra	ining. Th	e produ	activity r	neasur	es for in	divio	duals trained	t l
		by each me	-	-		-					
		-									

			Method	1	36	26	31	20	34		25	1	
			Method		40	29	38	32	39		34		
			Method		32	18	23	21	33		27		
		At the	0.05 level	of sign	nifican	ce, d	lo the	e thre	e tra	ining	methods le	ad to	
		different	levels of p	roducti	vity?								
4	151.	The foll	owing data	a repre	sent th	ne nu	umber	r of u	nits	of pr	oduction pe	er day	15
		turned o	ut by five d	ifferen	t workı	men	using	differ	ent t	ypes c	of machines.		
			Workmei	n		Ma	achin	e type	S				
					А		B	C	1	D			
			1		44		38	47		36			
			2		46		40	52		43			
			3		34		36	44		32			
			4		33		38	46		33			
			5		38		42	49		39			
		(a) test v	whether the	mean p	product	tivity	is th	e same	e for	the 4	different ma	achine	
		types											
		(b) test	whether 5	men	differ	witl	h res	pect t	to m	ean p	oroductivity.	(use	
		significa	nce level =	0.05)									
4	152.	_			ne the	moi	sture	conte	nt of	samr	oles of a po	wder.	15
											Their assess		
			•	Jumpie	nom c		01 517	consi	5	ents.		mento	
			n below:		<u> </u>						٦		
			1	2	Consignation Consignation	gnm	ents	5		6	-		
		1	9	10	9		10	11		11			
		2	12	11	9		11	10)	10			
		3	11	10	10		12	11		10	_		
		4	12	13	11		14	12	,	10			
		Analvse	the data a	nd dise	L cuss w	heth	er the	ere are	e anv	/ sign	 ificant_diffe	erence	
		-	nents or be							0			
4	153.	•					7010	n 4 a	20000	to pla	ts. The figu	ras on	15
-	155.		r applies the					JI 4 SC	para	ie pio	is. The figu	ICS UII	15
			izers/Plots			•		Yie	ld				
				A		B		С		D	Total		
			trogen	6		4		8		6	24		
			otash	7		6 5		6		9 9	28		
			sphates Fotal	8		<u>5</u> 15		10 24		24	32		
			L Utal	<u></u>		1.5		<u>2</u> 7	1	<i>2</i> +	04		
		Find out	t if the plot	s are n	naterial	llv d	iffere	nt in f	fertili	tv as	also, if the	three	
			-			•				•	nificance le		
		0.05)		,				<i>j</i> ==0		2	,		
L	1	1											

		day by five diff			• 1			
		Workers	A	Ma B	chine Type		D	
		1	<u> </u>	B 36	4	-	D 38	
		2	44	40	5		44	
		$\frac{2}{3}$	37	38	4		36	
		4	45	34	4		30	
		5	40	44	5		40	
4	155.	Test (i) Whethe types. (ii) Whe The following turned out by 4	ther the 5 wo	orkers differ nts the num	with respect ber of unit	to mean pr s of produce	oductivity.	
		Workers		Machine Ty	• -			
			Α	B	C	D		
		1	6	7	9	7		
		2	5	6	8	5		
		3	5	8	5	5		
					-	-		
4	156.	4Test whether th(i) between the(ii) between theTo study the p	units produc units produc	ed by the wo ced by the m	orkers. achines.	6 ers under ti	hree differe	nt 15
4	156.	Test whether th (i) between the (ii) between the To study the p temperatures w	ere is a signi units produc units produc erformance	ficant chang ed by the wo ed by the m of three was vith specially	e: orkers. achines. shing powdo y designed v	ers under t		nt 15
4	156.	Test whether th (i) between the (ii) between the To study the p	ere is a signi units produc units produc erformance as recorded y	ficant changed by the wo bed by the m of three was with specially	e: rkers. achines. shing powdo y designed v Machine	ers under the vashing ma	chines	nt 15
4	156.	Test whether th (i) between the (ii) between the To study the p temperatures w Workmen	ere is a signi units produc units produc erformance	ficant change ed by the wo ced by the m of three was vith specially B	e: orkers. achines. shing powde y designed v Machine C	ers under the vashing mag	chines D	nt 15
4	156.	Test whether th (i) between the (ii) between the To study the p temperatures w Workmen Cold	ere is a signi units produc e units produc performance as recorded v A 57	ficant change ed by the wo ced by the m of three was vith specially B 55	e: orkers. achines. shing powdo y designed v Machine C 67	ers under the second se	chines D 79	nt 15
4	156.	Test whether th (i) between the (ii) between the To study the p temperatures w Workmen Cold Warm	ere is a signi units produc e units produc erformance as recorded v A 57 49	ficant change ed by the wo ced by the m of three was vith specially B 55 52	e: orkers. achines. shing powde y designed v Machine C 67 68	ers under the vashing made 1	chines D 79 69	nt 15
4	156.	Test whether th (i) between the (ii) between the To study the p temperatures w Workmen Cold	ere is a signi units produc e units produc performance as recorded v A 57	ficant change ed by the wo ced by the m of three was vith specially B 55	e: orkers. achines. shing powdo y designed v Machine C 67	ers under the vashing material of the second	chines D 79	nt 15
		Test whether th (i) between the (ii) between the To study the p temperatures w Workmen Cold Warm Hot Total	ere is a signi units produc e units produc erformance as recorded v A 57 49 54 160	ficant change ed by the wo bed by the m of three was vith specially B 55 52 46 153	e: orkers. achines. shing powde y designed v Machine C 67 68 58 193	ers under the vashing maching	chines D 79 69 58 06	
	156.	Test whether th (i) between the (ii) between the To study the p temperatures w Workmen Cold Warm Hot Total The following	ere is a signi units produce units produce erformance as recorded v A 57 49 54 160 are the defect	ficant change ed by the wo ced by the m of three was vith specially B 55 52 46 153 etive pieces	e: achines. aching powdo y designed v Machine C 67 68 58 193 produced by	ers under the vashing material of the vashing material	chines D 79 69 58 06 ators workin	ng 15
4		Test whether the (i) between the (ii) between the To study the p temperatures w Workmen Cold Warm Hot Total The following on 4 different p	ere is a signi units produce e units produce erformance as recorded v A 57 49 54 160 are the defect machines. Pe	ficant change ed by the wo bed by the m of three was vith specially B 55 52 46 153 ctive pieces provided and the second second characteristics of the second ctive pieces provided and the second second characteristics of the second characteristics of the second second characteristics of the second charac	e: achines. aching powder y designed v Machine C 67 68 58 193 produced by sis of varian	ers under the vashing maching	chines D 79 69 58 06 ators working et (a) wheth	ng 15 er
		Test whether the (i) between the (ii) between the To study the p temperatures w Workmen Cold Warm Hot Total The following on 4 different to operators different	ere is a signi units produce units produce erformance as recorded v A 57 49 54 160 are the defect machines. Petting and pro- tin mean pro-	ficant change ed by the wo bed by the m of three was vith specially B 55 52 46 153 ctive pieces provided and the second second characteristics of the second ctive pieces provided and the second second characteristics of the second characteristics of the second second characteristics of the second charac	e: achines. aching powder y designed v Machine C 67 68 58 193 produced by sis of varian	ers under the vashing maching	chines D 79 69 58 06 ators working et (a) wheth	ng 15 er
		Test whether the (i) between the (ii) between the To study the p temperatures w Workmen Cold Warm Hot Total The following on 4 different p	ere is a signi units produce units produce erformance as recorded v A 57 49 54 160 are the defect machines. Petting and pro- tin mean pro-	ficant change ed by the work and by the more of three was vith specially B 55 52 46 153 etive pieces productivity (b	e: achines. aching powder y designed v Machine C 67 68 58 193 produced by sis of variant o) whether r	ers under the vashing maching	chines D 79 69 58 06 ators working et (a) wheth	ng 15 er
		Test whether the (i) between the (ii) between the To study the p temperatures w Workmen Cold Warm Hot Total The following on 4 different to operators different	ere is a signi units produce units produce erformance as recorded v A 57 49 54 160 are the defect machines. Petting and pro- tin mean pro-	ficant change ed by the work and by the more of three was vith specially B 55 52 46 153 etive pieces productivity (b	e: achines. aching powder y designed v Machine C 67 68 58 193 produced by sis of varian	ers under the vashing maching	chines D 79 69 58 06 ators working et (a) wheth	ng 15 er
		Test whether th (i) between the (ii) between the To study the p temperatures w Workmen Cold Warm Hot Total The following on 4 different n operators differ mean productiv	ere is a signi units produce units produce erformance as recorded v A 57 49 54 160 are the defect machines. Petting and pro- tin mean pro-	ficant change ed by the work and by the more of three was vith specially B 55 52 46 153 etive pieces pr form analys oductivity (b	e: rkers. achines. shing powder y designed v Machine C 67 68 58 193 produced by sis of variant b) whether r	ers under the vashing made in the vashing made	chines D 79 69 58 06 ators working (a) wheth re different	ng 15 er
		Test whether the (i) between the (ii) between the To study the p temperatures w Workmen Cold Warm Hot Total The following on 4 different to operators different	ere is a signi units produce e units produce erformance as recorded v A 57 49 54 160 are the defect machines. Per in mean pro- ity. A 1	ficant change ed by the wo bed by the most of three was vith specially B 55 52 46 153 tive pieces p rform analys oductivity (b Open B 1 34	e: achines. aching powdo y designed v Machine C 67 68 58 193 produced by sis of varian b) whether r cators B 2	ers under the vashing material of the vashing of th	chines D 79 69 58 06 ators workin re (a) wheth re different B 4	ng 15 er
		Test whether th (i) between the (ii) between the To study the p temperatures w Workmen Cold Warm Hot Total The following on 4 different n operators differ mean productiv	ere is a signi units produce e units produce erformance as recorded v A 57 49 54 160 are the defect machines. Per c in mean pro- ity.	ficant change ed by the work and by the most of three was vith specially B 55 52 46 153 etive pieces productivity (b Open B 1	e: achines. achines. aching powder y designed v Machine C 67 68 58 193 produced by sis of variant b) whether r cators B 2 28	ers under the vashing made in the vashing is the vashing	chines D 79 69 58 06 ators working re (a) wheth re different B 4 29	ng 15 er

Note: The attached question paper is to be taken as a model question paper and all the M. Com I semester Question papers will have the similar pattern.

										Q.P Cod	le:53005
	St	. Phil	omer	na's (Colleg	e (A	itono	mous)	Mysore		
	I Sem	ester	M.Co	om F	inal I	Exam	inatio	on De	cember 2	019	
					ject: C					4	
		le: ST	ATIST	FICS	FOR	BUSI	NESS 1	DECIS	IONS (SC)		
Fime:	3 Hours	. · · ·	·. ·							Max M	arks: 70
	Contract Contract					RT – A					
	Answer any l				-					ß	5×5=25
. 1	State the featu										
2	If 2% of the e				and the second		pany ar	e defect	ive.		
	Find the prob										
	(a) at least on								defectives.		
3	What is samp										
4	Fit a straight				-		-		e for 2020.		
	Year	2012	2013	2014	2015	2016	2017	2018			•
	Production	60	72	74	65	82	85	95			
. 5	What do you	mean by	y time s	series?	Explain	its use	fulness	in busir	less.		
6	Distinguish b								al fluctuations	S.	
7	What is multi										
8	Given: $R_{12} =$	0.69, <i>R</i>	$_{13} = 0.5$	5 and 1	$R_{23} = 0.$	68 find	multip	le correl	ation co-effic	eient	
	$R_{3.1.2}$ and $R_{3.1.2}$	8									
	5,1,2	1,2,3			DA	RT – E					
		TL		F-	1 1 1			0 Maul			2.10.20
	Answer any									c 1 1 *	3×10=30
9	What is proba	ability?	Explain	n the di	fferent	approa	ches ava	ailable fo	or the study o	f probabi	lity.
10	Suppose that	a doorv	vay bein	ng cons	structed	is to be	e used b	y a clas	s of people w	whose heig	ghts are
	normally dist	ributed	with m	ean 70	inches	and star	ndard d	eviation	3 inches. Ho	w much h	igh the
	door way sho	uld be,	withou	t causir	ng more	than 2	5% of t	he peopl	e to bump the	eir heads?	? If the
	height of the	door ma	ay be fi	xed at	76 inche	es, how	many j	persons	out of 5,000 a	are expect	ted to
	bump their he	eads?					•				

РТО

Explain the probability sampling methods, their advantages and limitations.

12

11

Obtain t	he seas	onal ind	ices from the following data:
			Production (in thousand units)

Year	I Quarter	II Quarter	III Quarter	VI Quarter
2014	25	30	21	32
2015	27	28	25	34
2016	22	27	21	30
2017	24	25	20	33

8

1×15

13

Given the following data, find the regression equation of X_1 on X_2 and X_3 .

Variable X₁: 11 17 26 28

Variable $X_2:2$ 4 8 18

Variable $X_3:2$ 3 4 5

Case Study (Compulsory)

PART-C

14

The following figures represent the number of units of production per day turned out by four different workers using four different types of machines.

Workers	Machine Type							
	A	B	C	D				
1	4	5	3	7				
2	6	8	6	5				
3	7	6	.7	8				

7 3 5 4

4

8 On the basis of this information, can it be concluded that

a) The mean productivity is the same for different machines? and

b) The workers do not differ with regard to their productivity?
