St.Philomena's College (Autonomus), Mysore PG Department of Mathematics Question Bank (Revised Curriculum 2020 onwards) First Year - First Semester (2021 - 23 Batch) Course Title (Paper Title): Group Theory

Unit	S.No	Question M	arks
1	1	Define order of an element. If $O(a) = 25$ for $a \in G$ then find $O(a^{20})$.	2m
1	2	If $H \leq G$ and $K \leq G$ where $O(G) < \infty$ such that $(O(H), O(K)) = 1$ then find the elements of $H \cap K$	2m
1	3	If $a \in G$ such that $O(a) = m$ then $O(a^k) = \frac{m}{(m, k)}$	
1	4	For any $a \in G$ show that $f_a : G \to G$ defined by $f_a(x) = axa^{-1}$ is an automorphism of G	2m
2	5	If $O(a) = 20$ find the $O(xa^{12}x^{-1})$	2m
2	6	If f is an automorphism of a group G and $N \trianglelefteq G$ then show that $f(N) \trianglelefteq G$	$2\mathrm{m}$
2	7	Show that every subgroup of an abelian group is normal	2m
2	8	If G is a group and $H \leq G$ of index 2 in G then show that $H \trianglelefteq G$	2m
3	9	If $G = \langle a \rangle$ is a cyclic group of order 120, then find the order of a^{50}	2m
3	10	As a consequence of Fundamental theorem of Homomorphism show that G/G=0 and G/0=G	2m
3	11	Show that S_n $n \ge 3$ has a trivial center	2m
3	12	Find the order of Sylow 2 subgroup in S_9	2m
3	13	Find the order of Sylow 3 subgroup in S_7	2m
4	14	Define a p-sylow subgroup. Find the order of Sylow 3 subgroup in S_{13}	2m
4	15	Determine all the automorphisms of the additive group $\mathbb Z$	2m
4	16	Determine all the permutation in S_4 which are conjugate to (1234)	2m
4	17	Prove or Disprove "If every proper subgroup of a group is normal then G is abelian"	2m
4	18	Show that $SL_n(\mathbb{R}) \trianglelefteq GL_n(\mathbb{R})$	$2\mathrm{m}$

1	19	Let G be a cyclic group of order n . Show that G has a unique subgroup	$10\mathrm{m}$	
	-	of order d for every divisor d of n. Determine all subgroups of \mathbb{Z}_{15}	_ 0 111	
		Define normal subgroup. Show that a subgroup ${\cal H}$ of a group ${\cal G}$ is normal		
1	20	if and only if a right coset of H in G is a left coset of H in G . Find all	all 10m	
		the normal subgroups of S_6 .		
		State and prove Lagrange's theorem for finite groups.Justify the con-	- 10m	
1	21	verse with an example. Does the converse is valid for cyclic and abelian		
		groups. If it is valid does the subgroups are unique? justify.		
		Define the commutator subgroup of a group G' of G . Show that G' is		
1	22	a normal subgroup of G and G/G^\prime is Abelian. Determine the commutator	10m	
		subgroup of S_3		
1	03	State and prove fundamental theorem of group homomorphism. Define	10m	
1	20	a n copy map with an example.	10111	
9	94	State and prove first isomorphism theorem. Prove that any finite cyclic	10m	
2	24	group of order n has $\phi(n)$ generators.	10111	
9	25	State and prove Second isomorphism theorem. Classify up to isomorphism	10m	
2	20	of all groups of order 45.	10111	
		If $H \leq GX = G/H$, where $H \leq G$. Then prove that there is a group		
2	26	homomorphism $\xi: G \to Sym(X)$ with the kernel K is the largest normal	10m	
		subgroup of G which is contained in H .		
9	97	Define an inner automorphism of a group G. Prove that the group of	10m	
2	21	inner automorphism $I(G) \cong G/Z(G)$. Find the $I(G)$ of Z_p .	10111	
2	28	State and prove Cayley's theorem.	$10\mathrm{m}$	
		Define the external direct product of Groups.		
3	29	Find the order of elements of $\mathbb{Z}_2 \times \mathbb{Z}_3$. Prove that $\mathbb{Z}_m \times \mathbb{Z}_n$ is cyclic if	10m	
		and only if $(m, n) = 1$		

	3	30	State and prove fundamental theorem on finite abelian group. Find the number of abelian groups of order 169.	10m	
			Find the number of elements of order 10 in $\mathbb{Z}_{10} \times \mathbb{Z}_{15}$. Find the number of		
	3	31	elements of order 3 in $S_3 \times \mathbb{Z}_6$. If $G/Z(G)$ is cyclic then G is abelian. Can	10m	
			O(G/Z(G)) = p, where $p - prime$ whenever G is abelian		
	2	32	Define the Dihedral group D_{2n} . Find the center of D_{2n} . Find the number	10m	
	ა		of conjugates of $\sigma = (12)(345)$ in S_7	TOIU	
			Prove or disprove the following statements		
	2	33	a) $(\mathbb{Q}^*, .)$ is cyclic	10m	
	3		b) $(\mathbb{Q}, +)$ is cyclic		
			c) $(\mathbb{R}, +)$ is cyclic		
	3	34	For a finite group G, if $H \leq G$ and $K \leq G$ prove that HK is a subgoup	10	
	5	34	of G if and only if $HK = KH$. Deduce the result $O(HK) = \frac{O(H)O(K)}{O(H \cap K)}$	TOUI	
			Define the center of a group $Z(G)$, prove that $Z(G) \trianglelefteq G$. If $G/Z(G)$ is		
	3	35	cyclic prove that G is abelian . Further if G is finite non abelian group	10m	
			then prove that $O(Z(G) \le \frac{1}{4}O(G).$		
	9	37	Prove that any subgroup of a cyclic group is cyclic. If every proper	10m	
3	9		subgroup of a group is cyclic does the group is cyclic? Justify		
			If $^{\prime}a^{\prime}$ has infinite order , then all distinct powers of $^{\prime}a^{\prime}$ are distinct in G		
	4	38	and in particular the cyclic subgroup of $\langle a \rangle$ is infinite. If G has no	10m	
			nontrivial subgroups show that G is of prime order.		
			If $a, b \in G$ such that $ab = ba$. If $O(a) = n, O(b) = m$, such that		
3	3	39	(m,n) = 1 then prove that $O(ab) = mn$.	10m	
	U		If $H K$ are subgroups of a group G of indices m and n and if $(m, n) = 1$.	10111	
			Show that $H \cap K$ is of index mn		

Derive the class equation for a finite group. Deduce that any group of

- 1 40 order p^n where p prime and $n \ge 1$ has nontrivial center. Show that if 10m n = 2 G is abelian.
- 41State and prove first Sylow's theorem 10m 3 Show that every permutation $\sigma \in S_n$ can be expressed as a product of 242transposition. Hence define A_n and show that for $n \geq 3$ A_n is the only 10m subgroup of S_n of index 2. If G is a cyclic group of order n then prove that G has $\phi(n)$ number 43of automorphisms. Hence prove that a group of order n > 2 has an 4 10m automorphism which is not an inner automorphism Prove that disjoint permutations commute. If $H \lneq G$ and $O(G) < \infty$ 44 410m such that $O(G) \nmid [G:H]!$. Prove that G is not simple. Define the Signature map . Show that for $n \ge 2$ the signature map is an 4 45homomorphism. $10 \mathrm{m}$ Find the signature of $\sigma = (1234)$ in S_4

Blue Print of the Question Paper St. Philomena's College (Autonomous), Mysore M. Sc-Mathematics (CBCS) I/II/III/IV- Semester Examination: 2020-21

Subject:

Time: 3 Hours Max			Marks: 70	
SI.	No		Marks	
	I	Section – A (MCQ)	•	
1	а		1	
	b		1	
	с		1	
	d		1	
		Section – B		
2	а		2	
	b		2	
	с		2	
		Section – C		
		Answer any three from the following		
	3			
	4		3x10=30	
	5			
	6			
		Section – D		
		Answer any three from the following		
	7			
	8		3x10=30	
	9			
	10			