St.Philomena's College (Autonomus), Mysuru

PG Department of Mathematics
Question Bank (Revised Curriculum 2020 onwards)
First Year - First Semester (2021 -23 Batch)
Course Title (Paper Title): Real Analysis-I Q.P.Code-
Unit
Sl.No
Question
Marks

Find the least upper bound and greatest lower bound of the set

1 $S=\left\{x \in \mathbb{R} / 3 x^{2}-10 x+3<0\right\}$.

Show that between any two real numbers there exists an irrational num-

5 Prove that the sequence $\left\{\frac{(-1)^{n}}{n}\right\}$ is Cauchy sequence.
Find the limit superior and limit inferior of the sequence $\left\{x_{n}\right\}$ where

6

7

8

9

12 Prove that $\lim _{n \rightarrow \infty}\left(\frac{n^{n}}{n!}\right)^{\frac{1}{n}}=e$.
13 Show that the series $\sum_{n=1}^{\infty}\left(\frac{3}{4}\right)^{n-1}$ converges to 4 .
Find the limit superior and limit inferior of the sequence $\left\{x_{n}\right\}$ where
$x_{n}=(-1)^{n}\left(1+\frac{1}{n}\right)^{n}$.
Find the limit superior and limit inferior of the sequence $\left\{x_{n}\right\}$ where $x_{n}=(-1)^{n} n^{\frac{1}{n}}$.

Show that every convergent sequence is bounded. What about the converse.
Prove that $\lim _{n \rightarrow \infty}\left[\left(\frac{2}{1}\right)^{1}\left(\frac{3}{2}\right)^{2}\left(\frac{4}{3}\right)^{3} \cdots,\left(\frac{n+1}{n}\right)^{n}\right]^{1 / n}=e$.
Show that $\lim _{n \rightarrow \infty} \frac{1}{n}\left(1+2^{\frac{1}{2}}+3^{\frac{1}{3}}+\cdots,+n^{\frac{1}{n}}\right)=1$.

$$
x_{n}=\left\{\begin{array}{l}
1+\frac{1}{n}, \text { if } n \text { is even } \\
-1-\frac{1}{n}, \text { if } n \text { is odd. }
\end{array}\right.
$$ true?

15 Test the convergence of the series $\sum_{n=1}^{\infty} \sin \left(\frac{1}{n}\right)$
16 Show that the series $\sum_{n=1}^{\infty}\left(\frac{1}{n^{2}}\right)^{1 / n}$ is divergent.
17 Discuss the convergence or divergence of the series $\sum \frac{n!}{n^{n}}$.
18 Test the convergence of the series $\sum\left(\frac{n}{n+1}\right)^{n^{2}}$
19 Find the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{2^{n+1}}{n!} z^{n}$. 2 m

Find the radius of convergence of the power series
20 $\sum_{n=0}^{\infty}\left\{\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right) \cdots,\left(1+\frac{n}{n}\right)\right\} z^{n}$
21 Discuss the convergence of the series $\sum_{n=0}^{\infty} \frac{(2 n)!(3 n)!}{n!(4 n)!}$.
22 Test the convergence of the series $\sum_{n=1}^{\infty} \frac{\arctan n}{1+n^{2}}$.
23 Test the convergence of the series $\sum_{n=1}^{\infty} \frac{e^{1 / n}}{n^{2}}$.
24 Discuss the convergence of the series $\sum_{n=0}^{\infty} \frac{(2 n)!(3 n)!}{n!(4 n)!}$.
What derangement of the series $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots$, will reduce its sum to $\frac{1}{2} \log 2$.
26 Show that the infinite products $\prod_{n=1}^{\infty}\left(1+\frac{1}{n}\right)$ is divergent.
27 Find the radius of convergence of the series $\sum \frac{2^{n}}{n!} z^{n}$.
2 m
28 Test the convergence and absolute convergence of the series $\sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{\log n} \quad 2 \mathrm{~m}$ 29 Use Leibnitz test to show that $\sum_{n=1}^{\infty} \frac{(-1)^{n}(n+5)}{n(n+1)}$ is convergent. 2 m

30 Show that the infinite product $\prod_{n=1}^{\infty}\left(1-\frac{1}{(n+1)^{2}}\right)$ converges to $\frac{1}{2}$.
31 If the product $\prod_{n=1}^{\infty}\left(1+a_{n}\right)$ is convergent. Show that $\lim _{n \rightarrow \infty} a_{n}=0$. 2 m

32

33 Find the sum of the series $1+\frac{1}{3}+\frac{1}{5}-\frac{1}{2}-\frac{1}{4}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6}-\frac{1}{8}+\cdots$.
Find the sum of the series $1+\frac{1}{3}+\frac{1}{5}-\frac{1}{2}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}-\frac{1}{4}+\cdots$.

Investigate what derangement of the series $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots$ will reduse its sum to zero.
exists a unique positive real number y such that $y^{n}=x$.

If A, G and H are respectively Arithmetic, geometric and harmonic means of positive reals $a_{1}, a_{2}, \ldots, a_{n}$ then show that $H \leq G \leq A$.

Prove that set of all complex number is not an ordered field.

State least upper bound property of real numbers. Show that the set of rational numbers \mathbb{Q} does not have this property.

State and prove Minkowski's inequality.

State and prove genralized arithmetic geometric mean inequality.
Find the supremum and infimum of the set
$S=\{x \in \mathbb{R} /(x-a)(x-b)(x-c)(x-d)<0, a, b, c, d \in \mathbb{R}, a<b<c<d\}.$.
If $\left\{x_{n}\right\}$ is a sequence of nonnegative reals and if $\lim _{n \rightarrow \infty} x_{n}=x$ then show that $x \geq 0$.

Prove that every bounded sequence $\left\{x_{n}\right\}$ of real numbers contains a convergent subsequence.

Show that set of all sub sequential limits of a real sequence $\left\{x_{n}\right\}$ is a closed subset of \mathbb{R}.

Suppose $\left\{x_{n}\right\}$ is monotonically increasing sequence. Show that $\left\{x_{n}\right\}$ is convergent if and only if it is bounded.

50 State and prove Cesaro's limit theorem.

4 m 4 m 4 m 6 m 6 m sequence.

Discus the convergence of the sequence $\left\{x_{n}\right\}$ where
52
$x_{1}=1, x_{2}=2, x_{n+2}=\frac{x_{n+1}+x_{n}}{2}$.
Show that the sequence $\left\{x_{n}\right\}$ defined by $x_{1}=\sqrt{2}$ and $x_{n+1}=\sqrt{2 a_{n}}$ converges to 2.

A sequence $\left\{x_{n}\right\}$ is defined as $x_{1}=1$ and $x_{n+1}=\frac{4+3 x_{n}}{3+2 x_{n}}, n \geq 1$. Show
54 that $\left\{x_{n}\right\}$ converges and find its limit.

Prove that: (i) If $p>0$ then $\lim _{n \rightarrow \infty} n^{\frac{1}{n}}=1$.
(ii) If $p>0$ and $\alpha \in \mathbb{R}$ then $\lim _{n \rightarrow \infty} \frac{n^{\alpha}}{(1+p)^{n}}=0$.

56 State and prove the Cauchy's first limit theorem.
57 Discuss the convergence of $\sum_{n=1}^{\infty} \frac{1}{n^{p}}, p \in \mathbb{R}$.
8 m
Suppose $a_{1} \geq a_{2} \geq \ldots, \geq a_{n} \geq 0$ then show that $\sum_{n=1}^{\infty} a_{n}$ converges if and
58 only if $\sum_{n=1}^{\infty} 2^{k} a_{2 k}$ converges.

59 State and prove the Cauchy's Criterion for convergence of a series.
6 m

Define the number e. Show that it is the limit of the sequence $\left\{x_{n}\right\}$ where
60 $x_{n}=\left(1+\frac{1}{n}\right)^{n}, n \in \mathbb{N}$.

61 State and prove Integral test.
8 m
Suppose $a_{n}>0$ and $b_{n}>0$ for $n \geq 1$ and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\alpha$ where α is non
62 zero real number. Show that $\sum_{n=0}^{\infty} a_{n}$ and $\sum_{n=0}^{\infty} b_{n}$ behave alike.

63 State and prove integral test.
64 State and prove Gauss test.
65 Investigate the behavior of the series $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!} x^{n}, x>0$.
4 m
Investigate the behavior of the series $\sum_{n=1}^{\infty} e^{-K H_{n}}$ where
6 m
$H_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots,+\frac{1}{n}$.

Test for convergence of the hyper geometric series
$67 \sum_{n=1}^{\infty} 1+\frac{\alpha \cdot \beta}{1 . \gamma} x+\frac{\alpha(1+\alpha) \beta(1+\beta)}{1.2 \gamma(1+\gamma)} x^{2}+\cdots$, for all positive values of 6 m $x ; \alpha, \beta, \gamma$ being all positive.
68 Test the convergence of the series $\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{n}$.
69 Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n^{3}+1}{2^{n}+1}$.
70 Test the convergence of the series $\sum_{n=1}^{\infty} \frac{n^{3}+1}{2^{n}+1}$.
71 Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1.6 .11 \ldots,(5 n-4)}{2.6 .10 \ldots,(4 n-2)}$.
72 Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{3^{n}-\sin n}$.
$4 m$

73 Test the convergence and absolute convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n \sqrt{n}} .4 \mathrm{~m}$
74 Test the convergence and absolute convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n+1} .4 \mathrm{~m}$
75 State and prove Riemann's Rearrangement theorem.
76 State and prove Cauchy condition for convergence of infinite product.
10 m

8 m

77

Define Cauchy product of two series and show that Cauchy's product of two convergent series need not be convergent.

78 State and prove Mertens theorem.
Suppose that $a_{n} \geq 0, \forall n \in \mathbb{N}$, then show that $\prod_{n=1}^{\infty}\left(1+a_{n}\right)$ converges if
79 and only if $\sum_{n=1}^{\infty} a_{n}$ converges.
Suppose $\sum a_{n}$ is a rearrangement of $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$, in which p positive
80 terms are followed by q negative terms, in which $p \geq q \geq 1$. Show that
$\sum a_{n}=\log 2+\frac{1}{2} \log \left(\frac{p}{q}\right)$.
81 Show that $\prod_{n=2}^{\infty}\left(1+\frac{1}{2^{n}-2}\right)=2 \sum_{n=1}^{\infty} 2^{-n}$.
82 Show that $\prod_{n=2}^{\infty}\left(1+\frac{1}{n^{2}-1}\right)=2 \sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.
83 Show that $\prod_{n=2}^{\infty}\left(1+\frac{2 n+1}{\left(n^{2}-1\right)(n+1)^{2}}\right)=\frac{4}{3}$

Show that the Cauchy product of the convergent series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n+1}}$ with 4 m itself is not convergent .

Blue Print of the Question Paper
St. Philomena's College (Autonomous), Mysore
M. Sc-Mathematics (CBCS)

1/II/III/IV- Semester Examination: 2020-21
Subject:

