St.Philomena's College (Autonomus), Mysuru PG Department of Mathematics Question Bank (Revised Curriculum 2020 onwards) First Year - First Semester (2021 - 23 Batch) Course Title (Paper Title): Real Analysis-I Q.P.Code-

Unit	Sl.No	Question Ma	arks
1	1	Find the least upper bound and greatest lower bound of the set $S = \{x \in \mathbb{R}/3x^2 - 10x + 3 < 0\}.$	2m
1	2	Show that between any two real numbers there exists an irrational numbers.	
1	3	Let $\{a_n\}$ be a sequence of real numbers where $a_n = \frac{n!}{n^n}$. Show that $\lim_{n \to \infty} a_n = 0$.	2m
1	4	Find $\lim_{n \to \infty} \frac{e + e^{1/2} + e^{1/3} + \cdots + e^{1/n}}{n}$.	2m
2	5	Prove that the sequence $\left\{\frac{(-1)^n}{n}\right\}$ is Cauchy sequence.	$2\mathrm{m}$
2	6	Find the limit superior and limit inferior of the sequence $\{x_n\}$ where $x_n = \begin{cases} 1 + \frac{1}{n}, & \text{if } n \text{ is even} \\ -1 - \frac{1}{n}, & \text{if } n \text{ is odd.} \end{cases}$	2m
2	7	Find the limit superior and limit inferior of the sequence $\{x_n\}$ where $x_n = (-1)^n \left(1 + \frac{1}{n}\right)^n$.	2m
2	8	Find the limit superior and limit inferior of the sequence $\{x_n\}$ where $x_n = (-1)^n n^{\frac{1}{n}}$.	2m
2	9	Show that every convergent sequence is bounded. What about the converse.	2m
2	10	Prove that $\lim_{n \to \infty} \left[\left(\frac{2}{1}\right)^1 \left(\frac{3}{2}\right)^2 \left(\frac{4}{3}\right)^3 \cdots, \left(\frac{n+1}{n}\right)^n \right]^{1/n} = e.$	2m
2	11	Show that $\lim_{n \to \infty} \frac{1}{n} \left(1 + 2^{\frac{1}{2}} + 3^{\frac{1}{3}} + \cdots + n^{\frac{1}{n}} \right) = 1.$	2m
2	12	Prove that $\lim_{n \to \infty} \left(\frac{n^n}{n!} \right)^{\frac{1}{n}} = e.$	2m
3	13	Show that the series $\sum_{n=1}^{\infty} \left(\frac{3}{4}\right)^{n-1}$ converges to 4.	2m

If a series $\sum a_n$ is convergent, then show that $\lim_{n\to\infty} a_n = 0$. Is the converse 143 2mtrue? Test the convergence of the series $\sum_{n=1}^{\infty} \sin\left(\frac{1}{n}\right)$ Show that the series $\sum_{n=1}^{\infty} \left(\frac{1}{n^2}\right)^{1/n}$ is divergent. 3 152m3 162mDiscuss the convergence or divergence of the series $\sum \frac{n!}{n^n}$. 3 172mTest the convergence of the series $\sum \left(\frac{n}{n+1}\right)^{n^2}$ 3 182mFind the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{2^{n+1}}{n!} z^n$. 193 2mthe radius of Find convergence the of power series 3 202m $\sum_{n=1}^{\infty} \left\{ \left(1+\frac{1}{n}\right) \left(1+\frac{2}{n}\right) \cdots, \left(1+\frac{n}{n}\right) \right\} z^{n}.$ Discuss the convergence of the series $\sum_{n=0}^{\infty} \frac{(2n)!(3n)!}{n!(4n)!}.$ 213 2mTest the convergence of the series $\sum_{n=1}^{\infty} \frac{\arctan n}{1+n^2}$. 22 3 2mTest the convergence of the series $\sum_{n=1}^{\infty} \frac{e^{1/n}}{n^2}$. 233 2mDiscuss the convergence of the series $\sum_{n=1}^{\infty} \frac{(2n)!(3n)!}{n!(4n)!}$. 242m3 What derangement of the series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$, will reduce its sum 25 $2\mathrm{m}$ 4 to $\frac{1}{2}\log 2$. Show that the infinite products $\prod_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)$ is divergent. 262m4 Find the radius of convergence of the series $\sum \frac{2^n}{n!} z^n$. 4 272mTest the convergence and absolute convergence of the series $\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{\log n}$ 284 2mUse Leibnitz test to show that $\sum_{n=1}^{\infty} \frac{(-1)^n(n+5)}{n(n+1)}$ is convergent. 294 2mShow that the infinite product $\prod_{n=1}^{\infty} \left(1 - \frac{1}{(n+1)^2}\right)$ converges to $\frac{1}{2}$. 30 4 2mIf the product $\prod_{n=1}^{n} (1 + a_n)$ is convergent. Show that $\lim_{n \to \infty} a_n = 0$. 314 2mFind the sum of the series $1 + \frac{1}{3} + \frac{1}{5} - \frac{1}{2} + \frac{1}{7} + \frac{1}{6} + \frac{1}{11} - \frac{1}{4} + \cdots$. 32 2m4 Find the sum of the series $1 + \frac{1}{3} + \frac{1}{5} - \frac{1}{2} - \frac{1}{4} + \frac{1}{7} + \frac{1}{9} + \frac{1}{11} - \frac{1}{6} - \frac{1}{8} + \cdots$ 4 33 2m

4	34	Investigate what derangement of the series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots$ will reduse its sum to zero	$2\mathrm{m}$	
1	35	State and prove power mean inequality of real numbers.	6m	
1	36	State and prove Archimedean property of real numbers.		
1	37	State and prove Hölder's inequality.		
1	38	Prove that \mathbb{Q} is dense in \mathbb{R} .		
1	20	Show that for any real number $x > 0$ and for every integer $n > 0$ there	10m	
1	39	exists a unique positive real number y such that $y^n = x$.		
1	40	If A , G and H are respectively Arithmetic, geometric and harmonic	$7\mathrm{m}$	
		means of positive reals a_1, a_2, \ldots, a_n then show that $H \leq G \leq A$.		
1	41	Prove that set of all complex number is not an ordered field.	$3\mathrm{m}$	
1	42	State least upper bound property of real numbers. Show that the set of	6m	
		rational numbers \mathbb{Q} does not have this property.		
1	43	State and prove Minkowski's inequality.	$4\mathrm{m}$	
1	44	State and prove genralized arithmetic geometric mean inequality.		
1	45	Find the supremum and infimum of the set	4m	
1	45	Find the supremum and infimum of the set $S = \{x \in \mathbb{R}/(x-a)(x-b)(x-c)(x-d) < 0, a, b, c, d \in \mathbb{R}, a < b < c < d.\}.$	4m	
1	45 46	Find the supremum and infimum of the set $S = \{x \in \mathbb{R}/(x-a)(x-b)(x-c)(x-d) < 0, a, b, c, d \in \mathbb{R}, a < b < c < d.\}.$ If $\{x_n\}$ is a sequence of nonnegative reals and if $\lim_{n \to \infty} x_n = x$ then show	4m 4m	
1	45 46	Find the supremum and infimum of the set $S = \{x \in \mathbb{R}/(x-a)(x-b)(x-c)(x-d) < 0, a, b, c, d \in \mathbb{R}, a < b < c < d.\}.$ If $\{x_n\}$ is a sequence of nonnegative reals and if $\lim_{n \to \infty} x_n = x$ then show that $x \ge 0$.	4m 4m	
1 2 2	45 46 47	Find the supremum and infimum of the set $S = \{x \in \mathbb{R}/(x-a)(x-b)(x-c)(x-d) < 0, a, b, c, d \in \mathbb{R}, a < b < c < d.\}.$ If $\{x_n\}$ is a sequence of nonnegative reals and if $\lim_{n \to \infty} x_n = x$ then show that $x \ge 0$. Prove that every bounded sequence $\{x_n\}$ of real numbers contains a con-	4m 4m 4m	
1 2 2	45 46 47	Find the supremum and infimum of the set $S = \{x \in \mathbb{R}/(x-a)(x-b)(x-c)(x-d) < 0, a, b, c, d \in \mathbb{R}, a < b < c < d.\}.$ If $\{x_n\}$ is a sequence of nonnegative reals and if $\lim_{n \to \infty} x_n = x$ then show that $x \ge 0$. Prove that every bounded sequence $\{x_n\}$ of real numbers contains a con- vergent subsequence.	4m 4m 4m	
1 2 2 2	45 46 47 48	Find the supremum and infimum of the set $S = \{x \in \mathbb{R}/(x-a)(x-b)(x-c)(x-d) < 0, a, b, c, d \in \mathbb{R}, a < b < c < d.\}.$ If $\{x_n\}$ is a sequence of nonnegative reals and if $\lim_{n \to \infty} x_n = x$ then show that $x \ge 0$. Prove that every bounded sequence $\{x_n\}$ of real numbers contains a con- vergent subsequence. Show that set of all sub sequential limits of a real sequence $\{x_n\}$ is a	4m 4m 4m	
1 2 2 2	45 46 47 48	Find the supremum and infimum of the set $S = \{x \in \mathbb{R}/(x-a)(x-b)(x-c)(x-d) < 0, a, b, c, d \in \mathbb{R}, a < b < c < d.\}.$ If $\{x_n\}$ is a sequence of nonnegative reals and if $\lim_{n \to \infty} x_n = x$ then show that $x \ge 0$. Prove that every bounded sequence $\{x_n\}$ of real numbers contains a con- vergent subsequence. Show that set of all sub sequential limits of a real sequence $\{x_n\}$ is a closed subset of \mathbb{R} .	4m 4m 4m	
1 2 2 2 2	 45 46 47 48 49 	Find the supremum and infimum of the set $S = \{x \in \mathbb{R}/(x-a)(x-b)(x-c)(x-d) < 0, a, b, c, d \in \mathbb{R}, a < b < c < d.\}.$ If $\{x_n\}$ is a sequence of nonnegative reals and if $\lim_{n \to \infty} x_n = x$ then show that $x \ge 0$. Prove that every bounded sequence $\{x_n\}$ of real numbers contains a con- vergent subsequence. Show that set of all sub sequential limits of a real sequence $\{x_n\}$ is a closed subset of \mathbb{R} . Suppose $\{x_n\}$ is monotonically increasing sequence. Show that $\{x_n\}$ is convergent if and only if it is bounded	4m 4m 4m 4m	
1 2 2 2 2 2	 45 46 47 48 49 50 	Find the supremum and infimum of the set $S = \{x \in \mathbb{R}/(x-a)(x-b)(x-c)(x-d) < 0, a, b, c, d \in \mathbb{R}, a < b < c < d.\}.$ If $\{x_n\}$ is a sequence of nonnegative reals and if $\lim_{n \to \infty} x_n = x$ then show that $x \ge 0$. Prove that every bounded sequence $\{x_n\}$ of real numbers contains a con- vergent subsequence. Show that set of all sub sequential limits of a real sequence $\{x_n\}$ is a closed subset of \mathbb{R} . Suppose $\{x_n\}$ is monotonically increasing sequence. Show that $\{x_n\}$ is convergent if and only if it is bounded. State and prove Conserval limit theorem	4m 4m 4m 6m	

2	51	Show that a real sequence $\{x_n\}$ converges if and only if it is a Cauchy	8m	
		sequence.		
2	52	Discus the convergence of the sequence $\{x_n\}$ where	4m	
		$x_1 = 1, x_2 = 2, x_{n+2} = \frac{x_{n+1} + x_n}{2}.$		
2	53	Show that the sequence $\{x_n\}$ defined by $x_1 = \sqrt{2}$ and $x_{n+1} = \sqrt{2a_n}$	4m	
		converges to 2.		
2	54	A sequence $\{x_n\}$ is defined as $x_1 = 1$ and $x_{n+1} = \frac{4+3x_n}{3+2x_n}, n \ge 1$. Show	4m	
-	01	that $\{x_n\}$ converges and find its limit.		
0	FF	Prove that: (i) If $p > 0$ then $\lim_{n \to \infty} n^{\frac{1}{n}} = 1$.	C	
Ζ	99	(ii) If $p > 0$ and $\alpha \in \mathbb{R}$ then $\lim_{n \to \infty} \frac{n^{\alpha}}{(1+p)^n} = 0$.	om	
2	56	State and prove the Cauchy's first limit theorem.	6m	
3	57	Discuss the convergence of $\sum_{n=1}^{\infty} \frac{1}{n^p}, p \in \mathbb{R}.$	8m	
		Suppose $a_1 \ge a_2 \ge \ldots, \ge a_n \ge 0$ then show that $\sum_{n=1}^{\infty} a_n$ converges if and		
3	58	only if $\sum_{n=1}^{\infty} 2^k a_{2k}$ converges.	8m	
3	59	State and prove the Cauchy's Criterion for convergence of a series.	6m	
9	60	Define the number e. Show that it is the limit of the sequence $\{x_n\}$ where	6m	
J	00	$x_n = \left(1 + \frac{1}{n}\right)^n, n \in \mathbb{N}.$	0111	
3	61	State and prove Integral test.	8m	
		Suppose $a_n > 0$ and $b_n > 0$ for $n \ge 1$ and $\lim_{n \to \infty} \frac{a_n}{b_n} = \alpha$ where α is non		
3	62	zero real number. Show that $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ behave alike.	4m	
3	63	State and prove integral test.	8m	
3	64	State and prove Gauss test.	$6\mathrm{m}$	
3	65	Investigate the behavior of the series $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} x^n, x > 0.$	4m	
0	66	Investigate the behavior of the series $\sum_{n=1}^{\infty} e^{-KH_n}$ where	C	
ა	66	$H_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}.$	юm	

Test for convergence of the hyper geometric series

$$\begin{array}{c} 67 \quad \sum_{n=1}^{\infty} 1 + \frac{\alpha\beta}{1,\gamma}x + \frac{\alpha(1+\alpha)\beta(1+\beta)}{1.2\,\gamma(1+\gamma)}x^2 + \cdots, \text{ for all positive values of } 6m \\ x; a, \beta, \gamma \text{ being all positive.} \end{array}$$

$$\begin{array}{c} 68 \quad \text{Test the convergence of the series } \sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{n} . & 4m \\ 69 \quad \text{Test the convergence of the series } \sum_{n=1}^{\infty} \frac{n^2 + 1}{2^n + 1} . & 4m \\ 70 \quad \text{Test the convergence of the series } \sum_{n=1}^{\infty} \frac{n^2 + 1}{2^n + 1} . & 4m \\ 70 \quad \text{Test the convergence of the series } \sum_{n=1}^{\infty} \frac{n^2 + 1}{2^n + 1} . & 4m \\ 71 \quad \text{Test the convergence of the series } \sum_{n=1}^{\infty} \frac{16,01....,(5n-4)}{2^n - 1} . & 4m \\ 71 \quad \text{Test the convergence of the series } \sum_{n=1}^{\infty} \frac{1}{2^n - \sin n} . & 4m \\ 72 \quad \text{Test the convergence and absolute convergence of the series } \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n\sqrt{n}} . & 4m \\ 73 \quad 72 \quad \text{Test the convergence and absolute convergence of the series } \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n\sqrt{n}} . & 4m \\ 74 \quad \text{Test the convergence and absolute convergence of the series } \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n+1} . & 4m \\ 74 \quad \text{Test the convergence and absolute convergence of the series } \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n+1} . & 4m \\ 75 \quad \text{State and prove Riemann's Rearrangement theorem.} \\ 10m \\ 4 \quad 76 \quad \text{State and prove Cauchy condition for convergence of infinite product.} \\ 8m \\ 4 \quad 77 \quad \text{Define Cauchy product of two series and show that Cauchy's product of two convergent series need not be convergent.} \\ 4 \quad 78 \quad \text{State and prove Mertens theorem.} \\ 8m \\ 4 \quad 80 \quad \text{terms are followed by q negative terms, in which $p \ge q \ge 1$. Show that $6m \\ \sum a_n = \log 2 + \frac{1}{2}\log\left(\frac{p}{q}\right). \\ 4 \quad 81 \quad \text{Show that } \prod_{n=2}^{\infty} \left(1 + \frac{1}{n^2 - 1}\right) = 2\sum_{n=1}^{\infty} \frac{1}{n(n+1)}. \\ 4m \\ 4 \quad 83 \quad \text{Show that } \prod_{n=2}^{\infty} \left(1 + \frac{2n+1}{(n^2-1)(n+1)^2}\right) = \frac{4}{3} \\ 4m \end{array}$$$

Show that the Cauchy product of the convergent series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$ with 4m

itself is not convergent .

Blue Print of the Question Paper St. Philomena's College (Autonomous), Mysore M. Sc-Mathematics (CBCS) I/II/III/IV- Semester Examination: 2020-21 Subject:

Time: 3 Hours Ma		x Marks: 70	
SI. No			Marks
		Section – A (MCQ)	•
1	а		1
	b		1
	с		1
	d		1
		Section – B	
2	а		2
	b		2
	с		2
		Section – C	
		Answer any three from the following	
	3		
	4		3x10=30
	5		
	6		
		Section – D	
		Answer any three from the following	
	7		
	8		3x10=30
	9		
	10		

4
