St.Philomena's College (Autonomus), Mysore PG Department of Mathematics Question Bank (Revised Curriculum 2020 onwards) First Year - First Semester (2021 -23 Batch) Course Title (Paper Title): Real Analysis -II

Unit	S.No	Question N	farks
1	1	Define countable and uncountable set	$2\mathrm{m}$
1	2	Construct a bounded set of real numbers with exactly three limit points	s 2m
1	3	Is the collection of disjoint intervals of positive length countable set why?	? 2m
1	4	The <i>E</i> be a non empty connected subset of \mathbb{R} and <i>E</i> contains no irrational numbers find the cardinality of <i>E</i> .	l 2m
1	5	Is the set of intervals with rational endpoints a countable set? Why?	$2\mathrm{m}$
2	6	Show that the collection of all subsets of positive integers is uncountable	e 2m
2	7	Give an example of a real valued continuous function f such that set of all zeros of f is a closed set but not compact	f 2m
2	8	Give an example of a function f which is bounded but not of bounded variation	l 2m
3	9	Between any two roots of $\sin x$ show that there is a root of $\cos x$	2m
3	10	Draw the graph of $f(x) = [x]$ what kind of discontinuity do the function f has ?	ı 2m
3	11	Show that there is no value ke such that the equation $x^3 - 3x + k = 0$ has two distinct roots in [0,1].) 2m
3	12	Construct a function $f : \mathbb{R} \to \mathbb{R}$ which is continuous precisely at one point.	e 2m
3	13	Given open cover of the interval which is no finite sub cover	2m
4	14	Prove that $\forall x > 0$, $sinx > x - \frac{x^3}{6}$	2m
4	15	If $f(x)$ equals to zero $\forall x \in \mathbb{Q}$ and equals to 1 for all irrational x show that f is not Riemann integrable on [a,b] for any $a < b$.	2m

4	16	Give an example of a function whose derivative is not continuous	2m	
4	17	Suppose $f \ge 0$, f is continuous on [a,b] and $\int_{a}^{b} f(x)dx = 0$. Prove that	2m	
		$f(x) = 0 \forall x \in [a, b]$		
1	18	Prove that the open interval $(0,1)$ is uncountable. In a metric space, prove	10m	
		that a finite intersection of open sets is open.		
		If $\{I_n\}$ is a sequence of intervals $\in \mathbb{R}$ such that $I_n \supset I_{n+1}, n \in \mathbb{N}$ then		
1	19	show that $\cap I_n$ is not empty. Prove that a closed interval [a,b] is compact	10m	
		by showing that every open cover of [a,b] has a finite subcover.		
1	20	Prove that open interval (a,b) is an open set. Prove that every infinite	10m	
Ŧ	20	subset of a countable set is countable.	10111	
1	01	If $\{E_n\}$ is a sequence of countable set then show that $\bigcup_{n=1}^{\infty} E_n$ is count-	10	
I	21	able. If A_1 and A_2 are countable show that $A_1 \times A_2$ is countable.	10111	
		Prove that every neighbourhood is an open set by defining a neighbour-		
1	22	hood of a point . If x is a limit point of E , then prove that every neigh-	10m	
		bourhood of x contains infinitely many points of E		
1	00	Show that a set G is open if and only if G^C is closed. If X is a metric	10m	
1	20	space and $E \subset X$. Then prove that E is closed if and only if $\overline{E} = E$	TOID	
9	24	Prove that every open set in $\mathbb R$ is the union of at most countable collection	10m	
2	24	of disjoint open intervals .	10111	
		If X and Y are metric spaces, $E \subset X$ and p be a limit point of E, if		
		$f: E \to Y$ then prove that $\lim_{x \to p} f(x) = q$ if and only if $\lim_{n \to \infty} f(x_n) = q$		
2	25	for every sequence $\{x_n\}$ in E with $x_n \neq p$. Prove that a mapping f of a	10m	
		metric space X into a metric space Y is continuous on X if and only if		
		$f^{-1}(G)$ is open in X for every open set G in Y.		
9	26	Prove that a continuous image of a compact set is compact. Prove that	10~	
<u>ک</u>	20	a subset of \mathbb{R} is connected if and only if it is an interval	TOU	

			Let A be a countable set and B_n be the set of all <i>n</i> -tuples $(a_1, a_2, a_3 \cdots a_n)$	
2			where $a_i \in A, i = 1, 2, 3 \cdots n$. Prove that B_n is countable and hence	
	2	27	deduce that the set of all rational numbers $\mathbb Q$ is countable . If (X,d) is	10m
			a metric space . Define $d_1: X \times X \to \mathbb{R}$ by $d_1(x, y) = \frac{d(x, y)}{1 + d(x, y)}$. Then	
			prove that d_1 is a metric on X	
2	9	<u> </u>	Prove that continuous image of a connected set is connected. Deduce	10m
	2	20	intermediate value theorem	
3	0	20	Prove that monotonic functions have no discontinuity of second kind.	10
	3	29	Show that $\frac{x}{1+x} < log(1+x) < x, \forall x > 0$	10m
			State and prove generalised mean value theorem. Let f be a real valued	
	3	30	function defined on [a,b] and suppose $f''(x) \geq 0 \ \forall x \in [a,b]$. Prove that	$10\mathrm{m}$
			$f(\frac{a+b}{2}) \le \frac{1}{2}[f(a) + f(b)]$	
	0	01	Prove that a real valued continous function defined on compact $E \subset \mathbb{R}$	10
	3	31	is uniformly continuus	10m
			If f is monotonic on (a,b). Prove that set of points of (a,b) at which	
	0	20	f is discontinuous is at most countable If $c_0 + \frac{c_1}{2} + \frac{c_2}{3} + \dots + \frac{c_{n-1}}{n} +$	10
	3	32	$\frac{c_n}{n+1} = 0$, where $c_0, c_1,, c_n$ are real constants. Prove that the equation	10m
			$c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n = 0$ has at least one root between 0 and 1.	
3	2	20	If f is monotically increasing on (a,b) then show that both $f(x^+)$ and	10
	3	33	$f(x^{-})$ exist at every point x of (a,b).	10m
		Constr point o 34 functio extensi	Construct a function f monotonic on $(0,1)$; discontinuous at every rational	
3	2		point of $(0,1)$ and at no other point of $(0,1)$. If f is a real continuous	10
	3		function defined on a closed set $E \subset \mathbb{R}$. Prove that there is a continous	10m
			extension of f from E to \mathbb{R}	
3	2	27	Let f be continuous on $[a,b]$ and f' exist and bounded on (a,b) then prove	10
	3	35	that f is of bounded variation on $[a,b]$.	10m

3	37	Let f be of bounded variation on [a,b]: then prove that f is of bounded	10m	
0		variation on [a,c] and on [c,b] and that $V_a^b(f) = V_a^c(f) + V_c^b(f)$	10111	
		If P^* is a refinement of P then prove that $L(P, f, \alpha) \leq L(P^*, f, \alpha)$ and		
4	38	$U(P^*, f, \alpha) \leq U(P, f, \alpha)$. If f is continous on [a,b] then prove that	10m	
		$f \in R(\alpha)$ on [a,b]		
0	20	If $f, g \in R(\alpha)$ on [a,b] then prove that $f+g \in R(\alpha)$ and that $\int_{a}^{b} (f+g)d\alpha =$	10m	
J	39	$\int_{a}^{b} f d\alpha + \int_{a}^{b} g d\alpha$		
		If γ 'is continuous on [a,b] then prove that γ is rectifable and $\Lambda(\gamma) =$		
3	40	$\int_a^b \gamma'(t) dt$		
		Suppose α is monotonically increasing and α' is Riemann integrable on		
2	41	[a,b]. Let f be bounded real function on [a,b] then prove that $f \in R(\alpha)$	10m	
		if and only if $f\alpha' \in R$ on [a,b]		
4	43	State and prove Taylors theorem	10m	
		Let $f \in R$ on [a,b] and f is continuous at $x_0 \in [a,b]$ for $a \leq x \leq b$ put		
4	4.4	$F(x) = \int_a^b f(t)dt$. Prove that F is continuous on [a,b] and $F'(x_0) = f(x_0)$.	10m	
4	44	Suppose f is a continous function from [0,1] to [0,1] prove that $f(x) = x$		
		for at least one $x \in [0, 1]$		

Blue Print of the Question Paper St. Philomena's College (Autonomous), Mysore M. Sc-Mathematics (CBCS) I/II/III/IV- Semester Examination: 2020-21

Subject:

Time: 3 Hours Max		Marks: 70	
Sl. No			Marks
	I	Section – A (MCQ)	•
1	а		1
	b		1
	с		1
	d		1
		Section – B	
2	а		2
	b		2
	с		2
		Section – C	
		Answer any three from the following	
	3		
	4		3x10=30
	5		
	6		
		Section – D	
		Answer any three from the following	
	7		
	8		3x10=30
	9		
	10		