St.Philomena's College (Autonomus), Mysore
 PG Department of Mathematics
 Question Bank (Revised Curriculum 2020 onwards)
 First Year - First Semester (2021 -23 Batch)
 Course Title (Paper Title): Real Analysis -II

Unit

S.No

1

2

3

4

5 Is the set of intervals with rational endpoints a countable set? Why? 2 m

6 Show that the collection of all subsets of positive integers is uncountable
Give an example of a real valued continuous function f such that set off
all zeros of f is a closed set but not compact
Give an example of a function f which is bounded but not of bounded
variation
9 Between any two roots of $\sin x$ show that there is a root of $\cos x$ 2 m

Draw the graph of $f(x)=[x]$ what kind of discontinuity do the function
f has ?
Show that there is no value ke such that the equation $x^{3}-3 x+k=0$
has two distinct roots in $[0,1]$.
Construct a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is continuous precisely at one
Question
Marks
2 m
2 m

2 m
why?
The E be a non empty connected subset of \mathbb{R} and E contains no irrational numbers find the cardinality of E.

2 m point.

Given open cover of the interval which is no finite sub cover 2 m
Prove that $\forall x>0, \sin x>x-\frac{x^{3}}{6} \quad 2 \mathrm{~m}$
If $f(x)$ equals to zero $\forall x \in \mathbb{Q}$ and equals to 1 for all irrational x show that f is not Riemann integrable on $[\mathrm{a}, \mathrm{b}]$ for any $a<b$.

Suppose $f \geq 0, f$ is continous on $[\mathrm{a}, \mathrm{b}]$ and $\int_{a}^{b} f(x) d x=0$. Prove that $f(x)=0 \quad \forall x \in[a, b]$

Prove that the open interval $(0,1)$ is uncountable. In a metric space,prove that a finite intersection of open sets is open.

If $\left\{I_{n}\right\}$ is a sequence of intervals $\in \mathbb{R}$ such that $I_{n} \supset I_{n+1}, n \in \mathbb{N}$ then show that $\cap I_{n}$ is not empty. Prove that a closed interval $[\mathrm{a}, \mathrm{b}]$ is compact by showing that every open cover of $[a, b]$ has a finite subcover.

Prove that open interval (a, b) is an open set. Prove that every infinite subset of a countable set is countable.

If $\left\{E_{n}\right\}$ is a sequence of countable set then show that $\cup_{n=1}^{\infty} E_{n}$ is countable. If A_{1} and A_{2} are countable show that $A_{1} \times A_{2}$ is countable.

Prove that every neighbourhood is an open set by defining a neighbourhood of a point .If x is a limit point of E, then prove that every neighbourhood of x contains infinitely many points of E

Show that a set G is open if and only if G^{C} is closed. If X is a metric space and $E \subset X$. Then prove that E is closed if and only if $\bar{E}=E$

Prove that every open set in \mathbb{R} is the union of at most countable collection of disjoint open intervals .

If X and Y are metric spaces, $E \subset X$ and p be a limit point of E, if $f: E \rightarrow Y$ then prove that $\lim _{x \rightarrow p} f(x)=q$ if and only if $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=q$ for every sequence $\left\{x_{n}\right\}$ in E with $x_{n} \neq p$. Prove that a mapping f of a metric space X into a metric space Y is continous on X if and only if $f^{-1}(G)$ is open in X for every open set G in Y.

Prove that a continuous image of a compact set is compact. Prove that a subset of \mathbb{R} is connected if and only if it is an interval

Let A be a countable set and B_{n} be the set of all n-tuples $\left(a_{1}, a_{2}, a_{3} \cdots a_{n}\right)$ where $a_{i} \in A, i=1,2,3 \cdots n$. Prove that B_{n} is countable and hence deduce that the set of all rational numbers \mathbb{Q} is countable. If (X, d) is a metric space. Define $d_{1}: X \times X \rightarrow \mathbb{R}$ by $d_{1}(x, y)=\frac{d(x, y)}{1+d(x, y)}$. Then prove that d_{1} is a metric on X

Prove that continuous image of a connected set is connected. Deduce intermediate value theorem

Prove that monotonic functions have no discontinuity of second kind. Show that $\frac{x}{1+x}<\log (1+x)<x, \quad \forall x>0$

State and prove generalised mean value theorem. Let f be a real valued function defined on $[\mathrm{a}, \mathrm{b}]$ and suppose $f^{\prime \prime}(x) \geq 0 \forall x \in[a, b]$. Prove that $f\left(\frac{a+b}{2}\right) \leq \frac{1}{2}[f(a)+f(b)]$

Prove that a real valued continous function defined on compact $E \subset \mathbb{R}$ is uniformly continous

If f is monotonic on (a, b). Prove that set of points of (a, b) at which f is discontinuous is at most countable If $c_{0}+\frac{c_{1}}{2}+\frac{c_{2}}{3}+\cdots+\frac{c_{n-1}}{n}+$ $\frac{c_{n}}{n+1}=0$, where $c_{0}, c_{1}, \ldots, c_{n}$ are real constants. Prove that the equation $c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n} x^{n}=0$ has at least one root between 0 and 1. If f is monotically increasing on (a,b) then show that both $f\left(x^{+}\right)$and $f\left(x^{-}\right)$exist at everey point x of (a, b).

Construct a function f monotonic on $(0,1)$; discontinous at every rational point of $(0,1)$ and at no other point of $(0,1)$. If f is a real continous function defined on a closed set $E \subset \mathbb{R}$. Prove that there is a continous extension of f from E to \mathbb{R}

Let f be continous on $[\mathrm{a}, \mathrm{b}]$ and f^{\prime} exist and bounded on (a, b) then prove that f is of bounded variation on $[\mathrm{a}, \mathrm{b}]$. variation on $[\mathrm{a}, \mathrm{c}]$ and on $[\mathrm{c}, \mathrm{b}]$ and that $V_{a}^{b}(f)=V_{a}^{c}(f)+V_{c}^{b}(f)$ If P^{*} is a refinement of P then prove that $L(P, f, \alpha) \leq L\left(P^{*}, f, \alpha\right)$ and $U\left(P^{*}, f, \alpha\right) \leq U(P, f, \alpha)$. If f is continous on [a,b] then prove that 10 m $f \in R(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$
If $f, g \in R(\alpha)$ on $[\mathrm{a}, \mathrm{b}]$ then prove that $f+g \in R(\alpha)$ and that $\int_{a}^{b}(f+g) d \alpha=$ $\int_{a}^{b} f d \alpha+\int_{a}^{b} g d \alpha$

If γ^{\prime} is continous on $[\mathrm{a}, \mathrm{b}]$ then prove that γ is rectifable and $\Lambda(\gamma)=$ $\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t$

Suppose α is monotonically increasing and α^{\prime} is Riemann integrable on [a,b]. Let f be bounded real function on [a,b] then prove that $f \in R(\alpha) \quad 10 \mathrm{~m}$ if and only if $f \alpha^{\prime} \in R$ on $[\mathrm{a}, \mathrm{b}]$

State and prove Taylors theorem
Let $f \in R$ on $[\mathrm{a}, \mathrm{b}]$ and f is continous at $x_{0} \in[a, b]$ for $a \leq x \leq b$ put $F(x)=\int_{a}^{b} f(t) d t$. Prove thst F is continous on $[\mathrm{a}, \mathrm{b}]$ and $F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$. Suppose \mathbf{f} is a continous function from $[0,1]$ to $[0,1]$ prove that $f(x)=x$ for at least one $x \in[0,1]$

Blue Print of the Question Paper
St. Philomena's College (Autonomous), Mysore
M. Sc-Mathematics (CBCS)

I/II/III/IV- Semester Examination: 2020-21
Subject:
Time: 3 Hours
Max Marks: 70

