St.Philomena's College (Autonomus), Mysore

PG Department of Mathematics

Question Bank (Revised Curriculum 2018 onwards)

First Year - First Semester (2020-22 Batch)

Course Title (Paper Title): Introduction to Complex analysis

 $Q.P.Code{-}57202$

\mathbf{Unit}	Sl.No	Question M	Iarks
1	1	Prove that $ z+w \ge z - w $.	$2\mathrm{m}$
1	2	Prove that if z is a root of the polynomial equation $P(z) = 0$, then \overline{z} is also a root.	5 2m
1	3	Prove that if $ z = Re(z)$, then z is a non-negative real number.	$2\mathrm{m}$
1	4	Let z be a complex number such that $Re(z) > 0$. Prove that $Re(\frac{1}{z}) > 0$. 2m
1	5	Prove that $\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}, \ (z_2 \neq 0).$	$2\mathrm{m}$
2	6	Prove that the centroid of the triangle whose vertices are z_1, z_2, z_3 is $\frac{z_1 + z_2 + z_3}{3}$.	5 2m
2	7	Show that the function $w = 2\overline{z}^2 + 1$ is defined in the entire complex plane.	2m
2	8	Compute $\lim_{z \to (1+i)} \left\{ \frac{z-1-i}{z^2 - 2z + 2} \right\}^2$.	$2\mathrm{m}$
2	9	Find the value of the principle square root function $z^{\frac{1}{2}}$ at $z = -2i$.	2m
2	10	Give an example of a function which is continuous everywhere and no where analytic.) 2m

3	11	If $f(z)$ and $f(\overline{z})$ are both analytic in a region D . Show that $f(z)$ is constant in the region.	2m
3	12	Prove that the limit of the sequence is unique if it exists.	2m
3	13	Verify Cauchy-Riemann equations for the function z^3 .	
3	14	Show that $\lim_{z \to 0} \frac{z}{\overline{z}}$ does not exists.	
4	15	Let $\gamma(t) = t^2 + it^2$ for $-1 \le t \le 1$. Discuss the properties of γ and also sketch a rough graph of the trajectory of γ .	2m
4	16	Evaluate $\oint_c \frac{1}{z}$, where c is the circle $x = \cos t$, $y = \sin t$, $0 \le t \le 2\pi$.	$2\mathrm{m}$
4	17	Evaluate $\int_c \frac{z^3 - 2z + 1}{(z-i)^2} dz$, where c is the circle $ z = 2$.	$2\mathrm{m}$
1	18	State and prove Lagrange's identity in the complex form. Hence, deduce Cauchy's inequality.	10m
1	19	Given that $z \neq 0$ and $w \neq 0$, demonstrate that $ z + w = z + w $ is true if and only if $w = tz$, for some $t > 0$. State and prove Demoivre's formula for complex number.	10m
1	20	If $z = x+i$ y and $w^2 = z$ for some w . Then find the value of w in complex form. Determine all the solutions of the equation $z^4 + 16 = 0$.	10m
1	21	Write a note on Riemann Sphere and hence deduce the formula for the distance between two points on it.	10m

Prove that two points z_1 and z_2 are reflection points for the line $\overline{\alpha}z$ + $\alpha \overline{z} + r = 0$ if and only if $\overline{\alpha} z_1 + \alpha \overline{z_2} + r = 0$. If z_1, z_2, z_3 are the vertices 10m of an isosceles right angled at the vertices z_2 , prove that $z_1^2 + 2z_2 + z_3^2 =$ $2z_2(z_1+z_3).$

10m

The points z_1, z_2, z_3, z_4 taken in order are con cyclic if and only if $\frac{(z_3 - z_1)(z_4 - z_2)}{(z_3 - z_2)(z_4 - z_1)}$ is purely real. Also, if $z_1 z_2 + z_3 z_4 = 0$ and $z_1 + z_2 = 0$, 2310m then z_1, z_2, z_3, z_4 are con cyclic. Show that two points z_1, z_2 will be inverse points with respect to the circle $z_1\overline{z_2} + \overline{\alpha}z_1 + \alpha\overline{z_2} + r = 0$.

Derive the general equation of the straight line in complex plane. Show that the triangle whose vertices are the oints represented by the complex numbers z_1, z_2, z_3 on the argand diagram is equilateral if and only if

$$\frac{1}{z_2 - z_3} + \frac{1}{z_3 - z_1} + \frac{1}{z_1 - z_2} = 0.$$

Evaluate $\lim_{z \to (e^{i\frac{\pi}{3}})} (z - e^{i\frac{\pi}{3}}) \frac{z}{(z^3 + 1)}$. Define continuity of a function and 2510m check whether the function $f(z) = \frac{Re(z)^2}{|z|^2}$ is continuous at z = 0.

Show that the function $f(z) = \overline{z}$ is continuous everywhere but no where 2610m differentiable. State and prove the necessary condition for a function to be analytic.

Deduce the polar form of Cauchy-Riemann equation and show that $f(z) = \sqrt{r}(\cos{\frac{\theta}{2}} + i\sin{\frac{\theta}{2}})$, where r > 0 and $0 < \theta < 2\pi$ is differen-2710m tiable. If f(z) is differentiable function, show that the Cauchy-Riemann equations can be put in the form $\frac{\partial f}{\partial \overline{z}}$.

2

22

24

1

1

1

1

2

Show that if f(z) = u + iv is analytic function, then u and v are both harmonic functions. Find the analytic function f(z) = u + iv given that 10m $u - v = e^x(\cos y - \sin y).$

2

2

2

2

2

3

3

29

Define a sequence, convergent sequence and cauchy sequence. Prove that a sequence $\{z_n\}$ is convergent if and only if the two real sequence $\{Re(z_n)\}$ and $\{Im(z_n)\}$ are both convergent and also,

$$\lim_{n \to \infty} z_n = \lim_{n \to \infty} \{ Re(z_n) + i \lim_{n \to \infty} \{ Im(z_n) \}$$

10m

30 State and prove Cauchy general principle of convergence for a sequence. 10m
Write a short note about the absolute convergence of a series. Discuss
31 some tests for convergence of infinite series.

- 32 State and prove Abel's limit theorem. Show that for any two complex 10m numbers z_1 and z_2 , $e^{z_1+z_2} = e^{z_1} \cdot e^{z_2}$.
- Define a neighborhood of a point, open set, closed set, limit point of a set, exterior point of a set, connected set and a region. Show that under the transformation iz + i, the half plane x > 0 maps onto the half plane v > 1.

Any bilinear transformation can be expressed as a product of transfor-

34 mation, rotation, magnification or contraction and inversion. Find the 10m image of the circle |z - 3i| = 3 under the map $w = \frac{1}{z}$.

iv

Define Cross Ratio and thus, show that any bilinear transformation pre-

35 serves cross ratio. If c is a curve $y = x^3 - 3x^2 + 4x - 1$ joining points 10m (1,1) and (2,3). Find the value of $\int_c (12z^2 - 4iz) dz$.

Find the bilinear transformation which maps the points $z = -1, 1, \infty$ respectively on w = -i, -1, i. Evaluate $\int_{(0,3)}^{(2,3)} (2y + x^2) dx + (3x - y) dy$ along:

36 1. the parabola $x = 2t, y = t^2 + 3.$ 10m

2. straight lines from (0,3) to (2,3) and then from (2,3) to (2,4).

3. a straight line from (0,3) to (2,4)

3

 $\mathbf{2}$

3

3

4

4

Integrate the functions $f(z) = x + y - 3ix^3$ and g(z) = -x + (y + z)i

37 between the points z = 0 and z = 1+i along different oaths. Let w(t) be a 10m complex valued function integrable on [a,b]. Then $\left| \int_{a}^{b} w(t) dt \right| \leq \int_{a}^{b} |w(t)|$.

State and prove ML-inequality and hence find an upper bound for the 38 absolute value of $\oint_c \frac{e^z}{z+1} dz$ where c is the circle |z| = 4. Evaluate $\int_c \overline{z} dz$, 10m where c is given by x = 3t, $y = t^2$, $-1 \le t \le 4$.

39 State and prove Cauchy's theorem for a triangle. 10m

If f(z) is analytic and z_1, z_2 are any two points in a single connected region R, then show that $\int_{z_1}^{z_2} f(z)dz$ is independent of the path in R joining z_1 and z_2 . Evaluate $\int_c \frac{dz}{z-a}$, where c is any simple closed curve, when z = ais outside c and z = a is inside c.

41 State and prove Cauchy's Integral formula. Evaluate
$$\int_{|z|=1} \frac{\cos 2\pi z}{(2z-1)(z-3)}$$
. 10m

4

4

4

4

4

42 State and prove Morera's theorem. Evaluate $\int_c \frac{dz}{(z-i)(z+i)}$, where c is circle |z+1| = 1.

43 State and prove Cauchy's Inequality. If $F(a) = \int_c \frac{z^2 + 2z - 1}{(z-a)^2} dz$, where c is the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$, find F'(1), F'(i), F'(-i).

44 State and prove Liouville's theorem, and deduce fundamental theorem of 44 algebra from it.

45 State and prove Maximum modulus theorem. If $f(z) = z^2 + 2$, then determine the minimum value of |f(z)| over the closed region $|z| \le 1$.

Blue Print of the Question Paper St. Philomena's College (Autonomous), Mysore M. Sc-Mathematics (CBCS) I/II/III/IV- Semester Examination: 2020-21 Subject:

Time: 3 Hours		ns M	Max Marks: 70	
Sl. No			Marks	
		Section – A (MCQ)		
1	а		1	
	b		1	
	с		1	
	d		1	
		Section – B	•	
2	а		2	
	b		2	
	c		2	
		Section – C	ł	
		Answer any three from the following		
	3			
	4		3x10=30	
	5			
	6			
		Section – D	ł	
		Answer any three from the following		
	7			
	8		3x10=30	
	9			
	10			

vii