St.Philomena's College (Autonomus), Mysore

PG Department of Mathematics

Question Bank (Revised Curriculum 2020 onwards)

First Year - First Semester (2020 - 22 Batch)

Course Title (Paper Title): Linear Algebra with Applications Q.P.Code-

Unit	S.No	Question	Marks
1	1	Define vector space.	$2\mathrm{m}$
1	2	Define subspace of a vector space.	2m
1	3	Prove that intersection of any two subspaces is also a subspace.	2m
1	4	Is union of any two subspaces is also a subspace? Justify.	2m
1	5	Define linear combination of vectors.	2m
1	6	Define linear span of a set.	2m
1	7	Define linearly independent set.	2m
1	8	Define linearly dependent set.	2m
1	9	Show that $W = \{(x, y, z)/lx + my + nz = 0\}$ is a subspace of \mathbb{R}^3 .	2m
1	10	Prove that if two vectors are linearly dependent one of them is a sca	lar 2m
		multiple of the other.	
1	11	If $v_1, v_2, v_3 \in V(F)$ such that $v_1 + v_2 + v_3 = 0$ then show that $\{v_1, v_2\}$	2, $2m$
		spans the same subspace of $\{v_2, v_3\}$.	

1	12	Define basis of a vector space.	2m	
1	13	Prove that any two basis of a finite dimensional vector space V have the	2m	
1	10	same number of elements.		
1	14	Define maximal linearly independent set.	2m	
1	15	Define minimal generating set.	$2\mathrm{m}$	
1	16	Define Kernel of a linear transformation.	$2\mathrm{m}$	
1	17	Define dimension of a vector space.	$2\mathrm{m}$	
1	18	Define linear transformation.	2m	
1	19	Define range space.	2m	
1	20	Define dual space of a vector space.	$2\mathrm{m}$	
2	21	Define inner product space.	$2\mathrm{m}$	
2	22	Define norm and find the norm of $(4,5,6)$.	$2\mathrm{m}$	
9	93	Define an orthogonal complement. Find the orthogonal compliment of	9m	
2	23	y-axis.	2111	
2	24	If V be a vector space of polynomials with inner product given by $(f, g) =$	$2\mathrm{m}$	
		$\int_0^1 f(t)g(t)dt \text{ then find } (f,g) \text{ if } f(t) = t+2 \text{ and } g(t) = t^2 - 2t - 3.$		
2	25	If V be a vector space of polynomials with inner product given by $(f, g) =$	2m	
		$\int_{0}^{1} f(t)g(t)dt \text{ then find } f \text{ if } f(t) = t^{3} - 3.$		
2	26	In any inner product space show that $\ \alpha u\ = \alpha \ u\ \ \forall \alpha \in F \ u \in V.$	2m	

2	27	Prove that absolute value of cosine of angle is almost one.	$2\mathrm{m}$
2	28	Define orthogonal set and orthonormal set.	$2\mathrm{m}$
2	29	Obtain an orthonormal basis with respect to the standard inner product	2m
-	20	for the subspace of \mathbb{R}^3 is generated by $(1,0,3)$ and $(2,1,1)$.	
2	30	If V is a finite dimensional inner product space and W is a subspace of	$2\mathrm{m}$
		V then prove that $(W^{\perp})^{\perp} = W$.	
2	31	Solve the following system of equations by cramer's rule $x_1 + 2x_2 + 3x_3 =$	2m
		$-5, 2x_1 + x_2 + x_3 = -7, x_1 + x_2 + x_3 = 0.$	
2	32	Consider the inner product space \mathbb{R}^4 with the standard inner product. If	2m
		u = (3, 2, k, -5) and $v = (1, k, 7, 3)$ are orthogonal. Find the value of k.	
2	33	If u and v are vectors in an inner product space V , then prove that	2m
		$ u + v ^2 + u - v ^2 = 2(u ^2 + v ^2)$	
2	34	Define bilinear form.	2m
2	35	Define symmetric and skew-symmetric bilinear form.	2m
3	36	Define eigen value and eigen vector of T .	$2\mathrm{m}$
3	37	Define normal linear operator.	$2\mathrm{m}$
3	38	Define Hermitian adjoint of T and prove that $(T^*)^* = T$.	$2\mathrm{m}$
3	39	Define unitary transformation.	$2\mathrm{m}$
3	40	If $T \in A(V)$ is unitary then prove that $TT^* = I = T^*T$.	2m

3 41 Prove that T is unitary then
$$||Tv|| = ||v||$$
. 2m

3 42 If T is unitary and
$$\lambda$$
 is a characteristic root of T, then prove that $|\lambda| = 1$. 2m

3 42 If T is unitary and
$$\lambda$$
 is a characteristic root of T, then prove that $|\lambda| = 1$. 2m
3 43 Show that $A = \begin{pmatrix} 4 & 3-5i \\ 3+5i & -7 \end{pmatrix}$ is hermitian. 2m

3 44 Show that
$$A = \begin{pmatrix} 4i & 3+2i \\ -3+2i & -7i \end{pmatrix}$$
 is skew hermitian. 2m

3 45 Show that
$$A = \begin{pmatrix} 2+3i & 1 \\ & & \\ i & 1+2i \end{pmatrix}$$
 is normal. 2m

3 46 Show that
$$A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$
 where θ is real, is unitary. 2m

4 47 Define a minimal polynomial for
$$T$$
 over F . 2m
4 48 Determine the rank and signature of the matrix $A = \begin{pmatrix} 4 & 5 & -2 \\ 5 & 1 & -2 \\ -2 & -2 & 3 \end{pmatrix}$. 2m
4 49 Find the minimal polynomial of the matrix $\begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & -9 \\ 0 & 1 & 6 \end{pmatrix}$. 2m

50 Reduce to Jordan form the matrix
$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 2m

4

51Find the symmetric matrix A associated with $q(x, y) = 2x^2 + xy + y^2$ 4 2m524 2mFind the rank and signature of the quadratic form $x_1^2 - 4x_1x_2 + x_2^2$. Reduce to triangular form, the matrix $A = \begin{pmatrix} 1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 1 & 0 \end{pmatrix}$ 532m4 2m4 54Define companion matrix of a function. Give an example of two matrices which have the same minimum polyno-4 552mmial but are not similar to each other. If $\lambda \in F$ is a characteristic root of $T \in A(V)$ and if $q(x) \in F[x]$ is a 5642mpolynomial then prove that $q(\lambda)$ is a characteristic root of q(T). If A is a lower triangular matrix then prove that all the diagonal entries 572m4 are eigen values of A. 1 3m58Show that sum of any two subspaces is also a subspace. Let $T \in A(V)$ be a Skew - Hermitian transformation then prove that all 3 594mthe eigen values of T are purely imaginary.

3	60	If $T \in A(V)$ and if $(Tv, Tv) = (v, v)$ for all $v \in V$ then prove that T is unitary.	4m
3	61	Let T be a self adjoint operator on a finite dimensional inner product space V . Then prove that every eigen values of T are real.	4m
3	62	If λ is a characteristic root of the normal transformation N and if $vN = \lambda v$ then prove that $vN^* = \overline{\lambda}v$.	4m
3	63	If $T \in A(V)$ is such that $(vT, v) = 0$ for all $v \in V$, then prove that $T = 0$.	4m
4	64	Find the rank and signature of the quadratic form $x_1^2 + 2x_1x_2 + x_2^2$.	4m
1	65	Show that the set of complex numbers is a vector space over the field of real numbers.	5m
3	66	If v_1, v_2, \ldots, v_n is an orthonormal basis of V and if the matrix of $T \in A(V)$ in this basis is (α_{ij}) , then prove that the matrix of T^* in this basis is (β_{ij}) , where $(\beta_{ij}) = \overline{(\alpha_{ij})}$.	5m
3	67	Prove that the Hermitian adjoint is a linear transformation.	$5\mathrm{m}$
3	68	Prove that the linear transformation T on V is unitary if and only if it takes an orthonarmal basis of V into an orthonormal basis of V .	$5\mathrm{m}$
3	69	Let $T \in A(V)$ be a unitary transformation and let λ be an eigen value of T then show that $ \lambda = 1$.	5m

Prove that the necessary and sufficient condition for a non-empty subset

W of a vector space V over a field F to be a subspace of V is that W is 6m closed under vector addition and scalar multiplication.

1

1

1

2

 $\mathbf{2}$

2

3

3

Let V be a finite dimensional vector space over a field F then prove that any linearly independent set of vectors in V is a part of a basis If the system of homogeneous linear equation $a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n =$

$$0, a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = 0, \ldots, a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = 0,$$
where $a_{ij} \in F$ is of rank r then prove that there are n-r linear independent solutions in $F^{(n)}$.

73 Show that any orthonormal set is linearly independent. 6m
74 If
$$u, v \in V$$
 and $\alpha, \beta \in F$ then show that $(\alpha u + \beta v, \alpha u + \beta v) = \alpha \overline{\alpha}(u, u) + \alpha \overline{\beta}(u, v) + \beta \overline{\alpha}(v, u) + \beta \overline{\beta}(v, v)$.
Let V be the set of all continuous real valued function defined on the

75 closed interval [0, 1] Show that V is a real inner product space with the 6m inner product defined by $(f,g) = \int_0^1 f(t)g(t)dt$.

Prove that the element $\lambda \in F$ is the characteristic root of $T \in A(V)$ if and only if for some $v \neq 0$ in V, $vT = \lambda v$.

Suppose S and T are linear operator on an inner product space V and c

77 is a scalar. If S and T possess adjoint operator. Prove that S + T, cT, 6m ST possess adjoint.

If $T, S \in A(V)$ and if S is regular, then T and STS^{-1} have the same 6m minimal polynomial.

78

79

4

4

1

1

1

1

Define the Jordan canonical form with suitable example which contains at least two Jordan blocks. Find the Jordan canonical form for the matrix: $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & 1 & 3 \end{pmatrix}$ 6m

Let V be a vector space over a field F then Prove that $S = \{v_1, v_2, \dots, v_n\}$

- ⁸⁰ is a basis of V if and only if every element of V can be uniquely expressed ^{7m} as a linear combination of finite element of S.
- 81 State and prove Fundamental theorem of homomorphism. 7m If v_1, v_2, \ldots, v_n are in V then prove that either they are linearly inde-
- 82 pendent or some v_k , $2 \le k \le n$ is a linear combination of the preceding 7m vectors $v_1, v_2, \ldots, v_{(k-1)}$.

Let V be a vector space over a field F. Let $S = \{v_1, v_2, \ldots, v_n\}$ and

⁸³ L(S)=W then Prove that if their exist a linearly independents of set S' ^{7m} of S such that L(S') = W.

Let V be a vector space over a field F. Let $S = \{v_1, v_2, \ldots, v_n\}$ spans V

1 and $S' = \{w_1, w_2, \dots, w_m\}$ be a linearly independent set of vectors in V 7m then show that $m \leq n$.

1	85	Show that any vector space of dimension n over a field F is isomorphic	7m	
		to $V_n(F)$.		
2	86	Let V be a finite dimensional inner product space. Let W be a subspace	$7\mathrm{m}$	
_	00	of V. Prove that V is direct sum of W and W^{\perp} that is $V = W \oplus W^{\perp}$.	,	
2	87	If V is a finite dimensional inner product space and W is a subspace of	7m	
	01	V then prove that $(W^{\perp})^{\perp}$.	, 111	
		Let V be the set of real valued function $y = f(x)$ satisfying $\frac{d^2y}{dx^2} + 4y = 0$.		
2	88	Prove that V is a two dimensional real vector space. Define $(u, v) =$	$7\mathrm{m}$	
		$\int_0^{\Pi} uv dx$, Find an orthonormal basis in V. (7M)		
		Show that $V_n(\mathbb{C})$ is a complex inner product space with the inner product		
2	89	defined by $(u, v) = x_1\overline{y_1} + x_2\overline{y_2} + \dots + x_n\overline{y_n}$ where $u = (x_1, x_2, \dots, x_n)$	$7\mathrm{m}$	
		and $v = (y_1, y_2, \dots, y_n).$		
4	90	Prove that congruence is an equivalence relation.	$7\mathrm{m}$	
Δ	91	If V is finite dimensional vector space then $T \in A(V)$ is singular if and	7~	
т	51	only if their exist $v \neq 0$ in V such that vT=0.	/ 111	
		If V is finite dimensional over F, then prove that $T \in A(V)$ is invertible		
4	92	if and only if the constant term of the minimal polynomial for T is not	$7\mathrm{m}$	
		zero.		

If V is n-dimensional vector space over F and if $T \in A(V)$ has all its 4 93 $7\mathrm{m}$ characteristic roots in F then prove that T satisfies a polynomial of degree n over F. If W is any subspace of a vector space V over a field F then prove that the set V/W of all cosets W + v, where $v \in V$ is a vector space over a 1 948mfield F for the vector addition and scalar multiplication defined as follows i) $W + v_1 + W + v_2 = W + v_1 + v_2 \ \forall \ v_1, v_2 \in V$ ii) $\alpha(W + v) = W + \alpha v$ $\forall \ \alpha \in F, v \in V.$ Let $\{v_1, v_2, \ldots, v_n\}$ be basis of V define $\hat{v}_i(\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n) =$ $\alpha_i \; \forall i = 1, 2, \dots, n$ then prove that \hat{v}_i is a linear transformation $\forall i = 1, 2, \dots, n$ 1 958m $1, 2, \ldots, n$ and $\{\hat{v}_1, \hat{v}_2, \ldots, \hat{v}_n\}$ form a basis of \hat{v} and hence dim V = dim $\hat{v}.$ 296 8mState and prove the Gram - Schmidt orthogonalization process. $\mathbf{2}$ 97 8mState and prove the Bessal's inequality. 2988mState and prove Cauchy - Schwartz Inequality. If $\lambda_1, \lambda_2, \ldots, \lambda_n \in F$ are distinct characteristic roots of $T \in A(V)$ and 3 998m v_1, v_2, \ldots, v_k characteristic vectors of T belonging $\lambda_1, \lambda_2, \ldots, \lambda_k$ respectively then prove that v_1, v_2, \ldots, v_k linearly independent over F.

If T in $A_F(V)$ has a minimal polynomial $p(x) = q(x)^e$, where q(x), is a monic, irreducible polynomial in F[x] then basis of Vover F can be found in which the matrix of T is of the form 100 $\begin{pmatrix} c(q(x)^{e_1}) & & \\ & c(q(x)^{e_2}) & \\ & & \ddots & \\ & & c(q(x)^{e_r}) \end{pmatrix}$ where $e = e_1 \ge e_2 \ge \cdots \ge e_r$.(

4

4

3

4

If W is a subset of V is invariant under T then T induces a linear transformation \overline{T} on V/W defined by $\overline{T}(v+W) = T(v) + W$, if T satisfies

101 the polynomial $q(x) \in F(x)$ then so does \overline{T} and if $p_1(x)$ is the mini- 8m mal polynomial for \overline{T} over a field F and if p(x) for T then prove that $p_1(x)/p(x)$.

Let V be an inner product space and let N be a normal transformation on V. Then prove that the following statements are true: i). ||N(v)|| =

- 102 $||N^*(v)|| \quad \forall v \in V \text{ ii}$). (N cI) is normal, for every $c \in F$ iii). If λ_1 and 10m λ_2 are distinct eigenvector of N with corresponding eigen values v_1 and v_2 then v_1 and v_2 are orthogonal.
- 103 State and prove Sylvester's law of inertia. 10m

Blue Print of the Question Paper St. Philomena's College (Autonomous), Mysore M. Sc-Mathematics (CBCS) I/II/III/IV- Semester Examination: 2020-21 Subject:

Tim	e: 3 Ho	Marks: 70		
SI. No			Marks	
		Section – A (MCQ)	ł	
1	a		1	
	b		1	
	с		1	
	d		1	
	•	Section – B	1	
2	a		2	
	b		2	
	с		2	
		Section – C		
		Answer any three from the following		
	3			
	4		3x10=30	
	5			
	6			
	1	Section – D	-	
		Answer any three from the following		
	7			
	8		3x10=30	
	9			
	10			

12