

ST.PHILOMENA'S COLLEGE (AUTONOMOUS), MYSURU

(AFFILIATED TO UNIVERSITY OF MYSORE & REACCREDITED BY NAAC WITH A GRADE)

M.Sc BIOCHEMISTRY

SEMESTER SCHEME

CBCS WITH LEARNING OUTCOME BASED CURRICULUM

Academic year 2018-19 onwards

PREAMBLE

This syllabus is framed to give sound knowledge with understanding of Biochemistry to undergraduate students of three years of B.Sc. degree course. This programme endeavors to provide students a broad based training in biochemistry with a solid background of basic concepts as well as exposing them to the exciting advancements in the field. In addition to theoretical knowledge, significant emphasis has been given to provide hands on experience to the students in the forefront areas of experimental biochemistry.

The goal of the syllabus is to make the study of Biochemistry popular, interesting and encouraging to the students for higher studies including research. The new and updated syllabus is based on a basic and applied approach with vigor and depth. At the same time precaution is taken to make the syllabus comparable to the syllabi of other universities and the needs of industries and research.

The syllabus is prepared after discussion at length with number of faculty members of the subject from industries and research fields. The units of the syllabus are well defined, taking into consideration the level and capacity of students.

VISION AND MISSION OF THE COLLEGE

VISION:

The college is guided by the visionary zeal of providing value- based education to everyone irrespective of religion, caste, creed or sex by which the character is formed, intellect is explained and one can stand on his/her feet.

MISSION:

To transform young men and women who come to learn not from books, but also from life and to share the experience of working and playing together, this inculcates life skills to become good citizens with integrity and discipline.

VISION AND MISSION OF THE DEPARTMENT

Vision:

To achieve academic excellence in biochemistry of imparting in-depth knowledge to the students, facilitating research activities and cater to the ever changing industrial demand & societal needs.

Mission:

- 1. To provide a learning environment that helps the students to enhance problem solving skills and be successful in their profession.
- 2. To prepare students to be lifelong learner by offering solid theoretical & practical foundation in various discipline of biochemistry and educating them about their professional and ethical responsibilities.
- 3. To Horne the skills and mould the students in such a way that they meet the requirements of the industry or to work independently.

4. To periodically update curriculum on par with emerging trends with inter and multidisciplinary approach.

PO No.	Programme Educational Objectives (PEOs)
PEO-1	CORE PROFICIENCY
	To expertise the students to be able to apply fundamental knowledge related to
	pure sciences in an interdisciplinary manner for providing innovative solutions
	to need based problems for global impact.
PEO-2	PROFESSIONAL DEVELOPMENT
	To train students to critically analyze scientific data, draw objective
	conclusions and apply this knowledge for human welfare. Students should be
	able to demonstrate expertise and ethical perspective on areas related to
	Biochemistry.
PEO-3	PROFESSIONALISM
	To train the An ability to gain domain knowledge and know-how for successful
	career in academia, industry and research.
PEO-4	LEARNING ENVIRONMENT
	To Promoting lifelong learning to meet the ever evolving professional demands
	by developing ethical, inter personal and team skills.
PEO-5	TECHNICAL ACCOMPLISHMENTS
	To equip the students with the talent to interpret in core applications by
	building up a multi-disciplinary concept.

Mapping	Mapping of Mission of the department with Programme Educational Objectives										
Mission		Programme E	ducational Of	ojectives (PEOs))						
	PEOs-1	PEOs-2	PEOs-3	PEOs-4	PEOs-5						
M1	✓			✓							
M2		✓			\checkmark						
M3			✓	✓							
M4	✓				\checkmark						

	Programme Outcomes (POs)
PO No.	Upon completion of the Programme the student will be able -
PO-1	Acquire practical skills to gather information, assess, create and execute new
	ideas to develop entrepreneurial skills
PO-2	Gain Proficiency in basic laboratory techniques and able to apply the scientific
	method on lab to land
PO-3	Inculcate a domestic and international perspective and be competent enough in
	the area of life sciences
PO-4	Learn to recognize potential laboratory safety and conserve nature and the
	environment and also To enable to get quality education in the areas of
	Biochemistry

	Programme Specific Outcomes(PSOs)												
PSO No.	Upon completion of the Programme the student will acquire -												
PSO-1	to use current biochemical and molecular techniques and carry out												
	experiments												
PSO-2	Develop skills in cultivation of plants& also Prepare them to do higher studies												
	in other biological fields like Genetic, Entomology, Biological Oceanography etc												
PSO-3	Monitoring the changes in modern life styles leads to modern diseases												

PSO-4	Developed critical thinking skills/laboratory techniques to be capable of
	designing, carrying out ,interpreting scientific experiments

		Programme Specific outcomes										
		Pro	gram Outo	omes			Program	Specific	Outcome	S		
Programme Educational Objectives	PO-1	PO-2	PO-3	PO-4	PO-5	PSO-1	PSO-2	PSO-3	PSO-4	PSO-5		
PEOs-1	✓			✓	✓		~					
PEOs-2		✓				~		✓				
PEOs-3			\checkmark	✓			~		~			
PEOs-4					✓	✓				✓		

ST. PHILOMENA'S COLLEGE (AUTONOMOUS), MYSURU-570 015 CHOICE BASED CREDIT SYSTEM

S1.	Subject	QP	TITLE OF THE PAPERS	Туре	L	Т	Р	Credits	Total
No	Code No	Code							Credit
	40010	F 4001	FIRST SEMESTEI			-			<u> </u>
l	A0210	54001	Biochemical Techniques	HC	3	0	0	3	
2.	A0220	54002	Biomolecules	HC	3	0	0	3	
3.	A0230	54003	Enzymology	HC	3	0	0	3	
4.	AP210	NA	Practical- Biomolecules & Techniques	HC	0	0	6	3	18
5.	A0310	54004	Any two of the following SC to be Physiology & Nutrition	Chosen SC	3	0	0	3	
5. 6.	A0320	54005	r 34				-		
0. 7.	A0320	54005	Principles of Chemistry	SC	3	0	0	3	
1.	A0330	34000	Biotechnology	SC	3	0	0	3	\cup
0	D0010	F 4101	SECOND SEMEST		-	-		-	-
8.	B0210	54101	Cell & Membrane Biology	HC	3	0	0	3	
9.	B0220	54102	Molecular Biology	HC	3	0	0	3	4
10.	B0230	54103	Carbohydrate & Lipid Metabolism	HC	3	0	0	3	
11.	BP210	NA	Practical- Enzyme & Metabolism	HC	0	0	6	3	
		1.	Any two of the following SC to be	Chosen					
	: Interdisci harmacolog		products-Shared by two departments-Ch	nemistry a	& Biocl	hemis	trv		
			two departments-Physics & Biochemistr				5		\rangle^{22}
12.	B0310	54104	Hormones & Cell Signalling	SC	3	0	0	3	
13.	B0510	96501	Biophysics(Interdisciplinary)	SC	3	0	0	3	
14.	B0530	96503	Pharmacology of plant products (Interdisciplinary)	SC	3	0	0	3	
			OE from other Department	s				-	
15.	-	-	-	OE	4	0	0	4	
1.6	00010	= 1001	THIRD SEMESTER		-	-			
16.	C0210	54201	Nitrogen Metabolism	HC	3	0	0	3	
17.	C0220	54202	Gene expression and genetic engineerin		3	0	0	3	
18.	C0230	54203	Immunology	HC	3	0	0	3	
19.	CP210	NA	Practicals: Metabolism, Genetic	HC	0	0	6	3	
			engineering and Immunology Any two of the following SC to be	Chasen					\succ_{22}
20.	C0310	54204	Clinical Biochemistry	SC	3	0	0	3	- (
20.	C0320	54204	Genetics & Evolutions	SC	3	0	0	3	
22.	C0330	54206	Microbiology & Microbial technology	SC	2	2	0	3	
44,	00000	01200	OE from other Department		4	4	0	5	\downarrow
23.				oe Oe	4	0	0	4	-
<u> </u>			FOURTH SEMESTER		т	0			
	DP210	NA	Industry internship/project work	HC	0	2	26	13	
24.		-	Any one of the following SC to be		-		I	-	1)
24.			· · · · · · · · · · · · · · · · · · ·	SC	2	2	0	3	$\lfloor \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
	D0310	54301	Biostatistics	SC	-	-	v	-	\rightarrow 10
24. 25. 26.	D0310 D0320	54301 54302	Biostatistics Scientific writing and presentation	SC		2	0	3	

ST. PHILOMENA'S COLLEGE (AUTONOMOUS)

Programme: M.Sc Biochemistry

(For Candidates admitted during the Academic year 2018-19 onwards)

			FIROI	ILAR - S		DIER	-1				
Course T	ìtle			BIOCHEM	/IICAI	L TEC	HNIQ	UES			
Course T	ype	Hard C	ore- Theory	Total Hours	48	Нот	urs/W	Veek 0 3		Credits	03
Course C	Course CodeA0210EvaluationInternal $C1+C2 = 15+15$ ExternalDurationC303Hrs								30 Marks 70 Marks	100	
	COURSE OBJECTIVES (COs)										
CO No.	Cour	rse Obje	ctives								
CO-1			tical and pra characterizati		0					-	ed in
CO-2	Deve	lop key	skills like prac	ctical resea	rch re	equire	ed in so	cientif	ic wo	rk	
	Mapping of CLOs with PSOs &CDLs										
CLOs No			urse Learning pletion of the lea				will	PS Addı	SOs resse	d	Ds
CLO-1		e the hnique periment	concept to		and nd	mole carry	cular out	PS	O-2	App	oly
CLO-2	app	plication	d construction of variou ry with its lim	s technic		nciple useo		PS	O-3	Unders	stand
CLO-3	and		d the usage o iniques in ts	of live mod extraction			earch llular	PS	0-1	Unders	stand
CLO-4	app	preciate	and analyze the limitatio imental data i	ns of con	clusio			PS	0-4	Anal	yze

FIRST YEAR - SEMESTER - I

Modules

COURSE CONTENTS

Duration

6 hours

1.0 Models: Animal Models, Choice Of Animals, Types Of Studies Mutant Organisms (Auxotroph), Cultured Animal And Plant Cells As Models.

> **Cell Fractionation Techniques:** Cell Lysis, Homogenization, **4 hours** Extraction, Salting In & Salting Out, Dialysis And Ultra Filtrations *Keywords: live animal and plant models; isolation of cellular component*

2.0 Analytical Ultracentrifuge: Construction, Svedberg's Constant, Sedimentation Velocity And Sedimentation Equilibrium, Schleiran Optics

> **Preparative:** Differential And Density Gradient Centrifugation, Centrifugal Elutriation, Construction and applications of Preparative Ultra Centrifuge ,Marker Enzymes

Keywords: construction and working principle; identification of cellular components

3.0	Paper Chromat Exchange Chror chromatography	ic Techniques: Prince ography, Adsorption of natography, Gel Filtration , GLC, HPLC, FPLC & C struction, working pri	Chromatography on Chromatogra Chromatofocusin	y, TLC, Ior phy Affinity g	101
4.0	SDS-PAGE, 21 Isoelectric Focu Electrophoresis, Separation Of Pr Visualizing Sep Silver Staining, Reverse Zymogra	roteins, Lipoproteins An arated Components- Ethidium Bromide, PA	rose Gel Ele ctrophoresis, l horesis, Isota d Nucleic Acids Staining: Coo AS Staining, Zyn	ctrophoresis High Voltage chophoresis massie Blue nogram And	8 hours
5.0	Spectroscopic Extinction coef Fluorescent Pro Sorting of cell- fl	Techniques: Princip fficient, Beer's law. obes And Their Appli	le of Colorim Principle of cations: FRET	eter: Molai Fluoremetry And FRAP	,
6.0	and Construction M/E ,Time of Fli Radioisotopes Life, Decay Const Detection And Liquid Scintilla Isotope Dilution	:Lipids-Choline, Fatty A	er Ionization, Fra- uadrupole Analy P, ¹³¹ I, ³⁵ S. Con carrier free isotog Muller Counter diography, Car	agmentation rser cept of Half pe r, Solid And bon Dating	, 12 hours
	Keywords: Rad application of	lioactivity, Constructi radioactive detectors ontent involves 90% T			1
Books S1.No	for Reference: Title of the book	Name of the author	Name of the publisher	Edition	Year of publicati
1.	A Guide to principles and techniques of	K.Wilson & K.Goulding	Cambridge University Press	3	1994

	practical				
	biochemistry				
2.	Principles and	Bryan L.Williams and	Cambridge	4	1996
	techniques of	Keith Wilson	University		
	practical		Press		
	biochemistry				
3.	Principles &Techniques of Biochemistry and Molecular Biology	Keith Wilson & John Walker	Cambridge University Press	7	2010
4.	Introductory Practical Biochemistry	S.K. Sawhney &, R. Singh	Alpha Science International Ltd	5	2005

S1.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of Publication
1.	An Introduction to Practical Biochemistry	David Plummer	Mc Grow Hill education	3	2011
2.	Text book of Biophysical Chemistry	Upadyaya & Upadyaya	Himalaya Publishing House Pvt. Ltd.	4	2016
3.	Instrumental Methods of Analysis	Muralidhara Rao	CBS Publishers & Distributors	1	2013

FIRST YEAR - SEMESTER – I

Course T	ìtle		BIOMOLECULES								
Course T	`ype	Hard C	ore- Theory	Total Hours	48	Hou	ırs/W	eek	03	Credits	03
0		40000	E	Internal		C1+C	2 = 1	5+15		30 Marks	100
Course Code A0220 Evaluation Externa				External	Dura	tion	C3	031	Hrs	70 Marks	100
	COURSE OBJECTIVES (COs)										
CO No.				Cours	se Obj	ectiv	es				
CO-1	Gai	n knowle	edge about va	rious macro	omoleo	cules	prese	nt in	biolog	gical system	
CO-2	Unc	nderstand structure, linkage and functions of macromolecules									
			Mapping	g of CLOs w	vith P	SOs å	5CDL	5			
CLOs No	•	Сот	urse Learning	g Outcom	es(CLC	Ds)		P	SO s	CLE)s
	•	On comp	oletion of the	e course th	e stud	lent v	vill	Add	lresse	d	
			lea	arn to							
CLO-1	D	emonstra	ate knowledge	e and unde	rstand	ling o	f the	P	SO-1	Analy	yze
	m	olecular	machinery of	f living cells	s and	princ	iples				
	th	at govern	n the structur	res of macro	omoleo	cules					
CLO-2	Is	olation a	nd characteri	zation of m	acrom	olecu	les	Р	SO-4	Unders	tand
CLO-3	St	ructural	elucidatio	n and	physi	ochen	nical	P	SO-1	Unders	tand
	pr	operties	of macromole	ecules							
CLO-4	St	ructure-						S0-4	App	ly	

Modules	COURSE CONTENTS	Duration
1.0	Carbohydrates: Structure And Classification Of Carbohydrates, Monosaccharides- pentose, hexose, ketose Disaccharides- Sucrose, Lactose, Maltose, Trehalose Polysaccharides- Homopolysaccharides, Heteropolysaccharides- Starch, Cellulose, Glycogen, Hyaluronic Acid, Chondroitin Sulphate, Chitin, Xylans Chemistry Of Monosaccharides: Structures Of Monosaccharides- Pentoses, Hexoses, Deoxyglucose, Amino Sugars, Muramic Acid, Neuraminic Acid Linkages in Lactose, Maltose, Trehalose and Glycosides. Isolation Of Polysaccharides, Bacterial Cell Wall Polysaccharides Blood Group Polysaccharides	9 hours
2.0	 Keywords: Chemistry of sugars, biological significance Methods of Structural Elucidation Degradation, Graded Acid Hydrolysis, Periodate Oxidation, Degradation of Oxopolysaccharides, Methylation, Acetylation, GC-MS Glycobiology: N- And O-Linked Glycoproteins, Lectins, Proteoglycans, Agreecan, Syndecan, Decorin, Pectin And Pectic Polysaccharides 	
	 Amino Acids: Nomenclature, Classification General Reactions of Amino Acids Unusual Amino Acids, Non Protein Amino Acids Peptide Bond: Features of the Peptide Bond, Naturally Occurring Peptides- Glutathione, Enkaphalins and Endorphins Chemical Synthesis of Peptides- Khorana's Solution Phase Synthesis, Merrifield's Solid Phase Synthesis Determination of Amino Acid Compositions: Acid And Base Catalyzed Hydrolysis, Separation, Quantification : Determination of N- And C- Terminal Residues, Determination of Site of 	10 hours
	Glycosylation and Type of Glycosylation Keywords: Chemical structural elucidation of amino acid	
3.0	Structural Elucidation of Protein: isolation of proteins, overview of purification and criteria of purity protein structure: primary structure- sequencing strategies, n- terminal and c-terminal, sequencing methods, automated Sequanators, determination of s-s-bond position Secondary structure of protein: a, β sheet, β bend, β turn, super secondary structures- prediction method- Ramachandran plot: φ , ψ angles, tertiary and quaternary structures. weak forces of interaction: hydrogen bonding ,Vander waal's forces, London force, ionic interactions , hydrophobic interactions s-s bridges, peptide bond glycosidic bond , phosphodiester bond , Allolysine , molten globule, Levinthal paradox, denaturation and renaturation of proteins, Anfinsen's experiment 3d structures of Myoglobin, hemoglobin ,immunoglobulin, collagen , keratin keywords: structures, bonding, forces of interaction,	10 hours
4.0	 Chemistry of lipids: Classification, Occurrence and Properties of lipids: Oils, Fats, And Waxes. Occurrence and Properties of Fatty Acids, Esters of Fatty Acids, Cholesterol, Phosopholipids, Glycolipids, Sphingolipids, Cerebrosides, Gangliosides. Lipid Mediators: Structure and major functions of Eicosanoids, Prostaglandins, Leukotrienes, Prostacyclins, Thromboxanes, DAG, Ceramide, PAF Keywords: Chemistry, chemical structural elucidation and 	8 hours

5.0 Chemistry of Nucleic Acids: : Isolation & Purification Of DNA And RNA From Biological Sources (Microbes, Plants And Animals) of Nucleic Acids

Physiochemical Properties of Nucleic Acids: Melting of DNA, Tm, Factors Affecting Tm, Cot Curve and Classification of DNA Based on Cot Curve, Chemical Reactions of DNA and RNA.

Sequencing of DNA: Maxam Gilbert Method, Dideoxy Method , Pyrosequencing, Chargaff's Rule, Secondary Structure Of DNA -Watson And Crick Model, B and Z DNA , Other Models of DNA Structure (A DNA)

Secondary Structural Features of DNA: Steam Loop Structure, Palindromic Sequences, Cruciform, Secondary Structure Of t-RNA -Clover Leaf Model

Keywords: isolation, classification, chemical reactions Note: Course content involves 100% Theory

Books for reference:

S1.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication
1.	Lehninger Principles of Biochemistry	David L. Nelson & Michael M. Cox	W.H. Freeman	6	2012
2.	Fundamentals of Biochemistry	J L Jain , Sunjay Jain , Nitin Jain	S Chand	7	2016
3.	Biochemistry	U.Sathyanaraya na & Chakrapani	Elsevier	4	2013
4.	Harpers Illustrated Biochemistry	Robert K. Murray, Peter J. Kennelly, David A. Bender	McGraw-Hill Medical	29	2012

Additional books for reference:							
S1.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publicati		
1.	Biochemistry	U.Sathyanarayana & Chakrapani	Elsevier	5	2017		
2.	Textbook of Biochemistry for Medical Students	DM Vasudevan Sreekumari S Kannan Vaidyanathan	Jaypee Brothers Medical Publishers	6	2011		
3.	Color Atlas of Biochemistry	Jan Koolman	Thieme	3	2013		

FIRST YEAR - SEMESTER - I

Course Title	ENZYMOLOGY									
Course Trees	Hard Core-Theory		Total	48	Ηοι	Hours/Week 03		03	Credits	03
Course Type			Hours							
	ourse Code A0230 Evaluation		Internal		C1+C2 = 15+15			30 Marks	100	
Course Code			External	Dura	Duration C3 03		on C3 03Hrs		70 Marks	100

	COURSE OBJECTIVES (COs)						
CO No.	o. Course Objectives						
CO-1	Understand the Thermodynamic terms and basic concepts.						
CO-2	Understand the classification, structure, properties an	d functions o	f enzymes.				
CO-3	Understand the mechanism of action of enzymes and analyse the different types of Catalysis.						
CO-4	Understand and apply the kinetic studies in the derivation of the M.M equation and their modification and understand different types of inhibition.						
CO-5	Apply and evaluate the role of enzymes in different are etc.	as like indus	tries, clinical labs				
	MAPPING CLO'S WITH PSO's AND C	D's					
CLO	Course Learning Outcomes	PSOs	CD's				
No.	On completion of the course the student will	Addressed					
	learn to						
CLO-1	Remember and understand the major classes of enzyme and their functions in the cell.	PSO- 1	Understand				
CLO-2	Explain the role of co-enzyme cofactor in enzyme catalyzed reaction.	PSO- 2	Remember				
CLO-3	Differentiate between equilibrium and steady state kinetics and analyzed simple kinetic data and estimate important parameter (Km. Vmax, Kcatetc).	PSO- 2	Remember				
CLO-4	Define and describe the properties of enzymes in and regulates biochemical pathway (inhibition)	PSO- 3	Remember				

Modules

CLO-5

COURSE CONTENTS

1.0 General Aspects: Nature Of Enzymes, Localization, Isolation, Purification And Characterization Of Enzymes. Criteria Of Purity Of Enzymes, Fold Purity. Nomenclature And IUB Classification Of Enzymes. Enzyme Specificity, Specific Activity, Assay Methods; Coupled Enzyme Assays, Continuous, End Point And Kinetic Assay. Units Of Enzyme Activity, IU And Katal.

Key words: Katal ,rpm, Centrifugation, Prosthetic group

Explain the role of enzymes in different fields.

2.0 **Enzyme Kinetics:** Michaelis-Menten Equation, Initial Velocity Approach, Steady State Approach. Vmax, Km And Their Significance. Linear Transformation Of Michaelis-Menten Equation; Line weaver-Burk Plot, Eadie-Hofstee, Wolf And Cornish-Bowden. Scatchard Plot. Rate Of A Reaction, Order And Molecularity. I Order Reaction Kinetics. Rectangular Hyperbola, Michaelis-Menten Equation As Rectangular Hyperbola, Asymptote, Linear Transformation, Calculation Of Slope, Intercepts.

Inhibition: Reversible And Irreversible Inhibition; Competitive, Non Competitive, Uncompetitive Product Inhibition And Suicide Inhibition. Determination Of Ki And Kd.

Bisubstrate Reaction: Cleland's Notation With Examples Of Ordered,

Duration

Analyse

PSO- 4

7hours

7hours

	Ping-Pong, And Random Reactions. General Rate Equation. Primary	
	And Secondary Plots	
	Key words: Inhibition, order of reaction, Vmax, Km	
3.0	Mechanisms Of Enzyme Catalysis: Active Site Structure; Methods Of	
	Determining Active Site Structure, Isolation Of ES Complex, Affinity	
	Labeling, Chemical Modification Studies And Active Site Structure	
	Investigation	7hours
	Nature Of Enzyme Catalysis: Transition State Theory, Proximity And	
	Orientation, Orbital Steering, Acid Base Catalysis, Covalent Catalysis, Metal Ion Catalysis, Nucleophilic and Electrophoilic Catalysis, Intra	
	Molecular Catalysis, Entropy Effects. Effect Of Temperature And Ph On	
	Enzyme Catalyzed Reaction.	
	Key words: Active site, Catalysis.	
4.0	Cooperativity: binding of Ligands to macromolecules; Scatchard plot,	
	Cooperativity, positive and Negetive Cooperativity. Oxygen binding to	
	hemoglobin. Hill equation, Homotropic and Heterotropic effectors,	7hours
	Aspartyl transcarbamylase as an allosteric enzyme.	
	Key words: Co-operativity, Allosteric Enzyme	
5.0	Mechanisms of action of Specific Enzyme: Chymotrypsin; Zymogen	
	Activation, Acid-Base Catalysis, Charge Relay Net Work. Lysozyme,	
	Alcohol Dehydrogenase, Ribonuclease, Carboxypeptidase A, RNA as an	7hours
	Enzyme, Abzymes, Coenzymic Action of NAD+, FAD, TPP, PLP, Biotin,	
	CoA, Folic Acid And Lipoic Acid.	
	Key words: Abzymes, Acid-Base Catalysis	
	Isoenzymes: LDH, MultifunctionalEnzymes (DNA Polymerase) and	
	Multi EnzymeComplex (PDC).	7hours
6.0	Metabolic regulation of enzyme activity: Feedback regulation, fine	/ nours
	control of enzyme activity.	
	Fast reactions - Stopped flow, temperature jump method with	
	examples of enzymes. Key words: Isoenzymes, Fast reactions, Metabolic regulation	
	Nete: Course content involves 100% Theory	

Note: Course content involves 100% Theory

Books fo	Books for Reference:							
S1.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication			
1.	Enzymes	Malcolm Dixon & Edwin C. Webb	Academic press Inc	2	1964			
2.	Enzymes- Biochemistry, Biotechnology, Clinical Chemistry	Trevor Palmer	East West	2	2004			
3.	Fundamentals of Enzymology.	Nicholas Price & Lewis Stevens	Oxford university press.	3	1999			
4.	Enzyme Assays: A Practical Approach	R Eisenthal& M.J. Dauson	Oxford University Press	2	2002			

S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication
1.	Enzymes	P. Asokan	Chinnaa Publications	2	2005
2.	Enzymology and Enzyme Technology	Dr. Bhatt S.M	S Chand & Company	1	2014
3.	Enzymology	T. Devasena	Oxford University Press	1	2010

FIRST YEAR - SEMESTER - I

Course Title		BIOMOLECULES & TECHNIQUES									
Course Type	Hard Core- Practical		Total	48	Hours/Week		rs/Week 06		Credits	03	
Course Type			Hours								
Common Conto	ADO10		- Code AD010 Exclassion		Internal	(C1+C2 = 15+15			30 Marks	100
Course Code	AP210	Evaluation	External	Duration		C3 03H1		Hrs	70 Marks	100	

	COURSE OBJECTIVES (COs)					
CO No.	Course Objectives					
CO-1	Gain technical experience and handle adjustable micro pipettes in a reproducible					
	manner					
CO-2	Perform logical reasoning and criticizing data					
CO-3	The isolation and detection of various Biomolecules by different chromatographic					
	techniques.					
CO-4	Techniques for lysis, electrophoresis and cholinesterase activity detection in					
	erythrocytes					

	MAPPING CLO'S WITH PSO's AND CD's							
CLO No.	Course Learning Outcomes (CLOs) On completion of the course the student will learn to	PSOs Addressed	CD's					
CLO-1	Accurate use of pipettes, making solutions for biochemical study	PSO- 1	Understand					
CLO-2	The estimation of Biomolecules	PSO -4	Understand					
CLO-3	Purify and characterize enzymes	PSO -3	Application					
CLO-4	Understand and interpretation experimental results	PSO-2	Analyse					

Modules	COURSE CONTENTS	Duration
1.0	Enzymes	
1.1	Purification of sweet potato amylase- Extraction, ammonium sulphate precipitation	4hours
1.2	Km and Vmax	4hours
1.3	Optimum temperature and energy of activation	4hours
1.4	pH optimum of salivary amylase	4hours

1.5	Assay of invertase from yeast- initial velocity calculation	4hours
1.0	Biomolecules	
1.1	Determination of Protein - Lowry, Biuret methods	4hours
1.2	Determination of Reducing sugar-DNS method	4hours
1.3	Determination of Amino acids	4hours
2.0	Techniques	
2.1	Paper chromatography- Circular, Ascending(amino acids) descending (sugars)	4hours
2.2	Isolation of lipids from egg yolk- TLC of Lipids	4hours
2.3	Gel filtration-purification of cytochrome C	4hours
2.4	Ion Exchange chromatography	4hours
2.5	Affinity chromatography- preparation of Paraoxonase	4hours
2.6	Molar Extinction coefficient	4hours

Note: Course content involves 100% Practicals

Bool	ts for reference:				
S1. No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication
1.	Text book of Medical laboratory technology	Praful. B. Godkar	Bhalani Publishing house	3, Volume I and II	2014
2.	Biochemical Methods	Sadasivam, S. and Manickam, A	asivam, S. New Age		2010

Addition	Additional books for reference:								
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication				
1.	Medical Laboratory Technology	Kanai L. Mukerjee	Tata McGraw Hill Education	2	2011				

FIRST	YEAR -	SEMESTER - I	

FIRST TEAR - SEMESTER - I											
Course Title	Course Title PHYSIOLOGY AND NUTRITION										
Course Type	Course Type Soft Core- Theory		Total Hours	48	Hours/Week 03		Credits	03			
		Evaluation	Internal		C1+C2 = 15+15				30 Marks	100	
Course Code	A0310		External	Duration C3 03Hrs		70 Marks	100				
		COUR	RSE OBJEC	TIVE	S (COs)						

CO No.	Course Objectives								
CO-1	Gain knowledge regarding biochemistry of various physiological processes specialized tissues and hormone action in animal system								
CO-2	Understand structure, operational mechanism and fur organ system in human body	nctions of the v	arious organs and						
CO-3	Understand aspects of various nutrients and their inte	ractions in foo	ds						
	Mapping of CLOs with PSOs &C	DLs							
CLOs No	 Course Learning Outcomes(CLOs) On completion of the course the student will learn to 	PSOs Addressed	CLDs						
CLO-1		PSO- 1	Remember						
CLO-2	Understand the structure, mechanism and functions of respiratory digestive and excretory system	PSO- 2	Understand						
CLO-3	Understand concept of macro, micro, essential and non-essential nutrients	PSO -2	Understand						
CLO-4	Understand the concept of diet	PSO- 4	Analyse						

Modules

COURSE CONTENTS

Duration

1hours

- 1.0 Physiology: Basic Body Plan In Humans, Location Of Organs. Keywords: Human organs
- 2.0 Blood: Composition, Cells, Plasma Proteins And Lipoproteins. Erythrocytes; Structure And Function. WBC; Types, Differential Count, Functions. Platelets And Its Function. Buffer Systems, Hemostasis, Blood Clotting, Classical And Alternate Pathway, Digestion Of Clot, Anticoagulants, Blood Volume, Blood Pressure And Their Regulations. Plasma Lipoproteins And Their Formation And Functions, HDL, LDL, VLDL, Chylomicrons. CSF And Its Functions

Keywords: Blood , clotting pathway , body fluids

3.0 Respiratory System: Lungs, Structure And Functions, Gas Exchange, Oxygen Binding By Hemoglobin, Factors Affecting Oxygenation And Acid-Base Balance.

Excretory System: Ultra Structure Of The Nephron, Glomerular Filtration, Formation Of Urine, Acid - Base Balance.

Hepatobiliary System: Anatomy Of The Liver, Blood Supply, Cells; Hepatocytes, Endothelial Cells And Kupffer Cells, Secretory And Excretory Function And Formation Of Bile.

Digestive System: GI Tract, Digestion And Absorption of **18hours** Carbohydrates, Proteins, Lipids. Mechanism of HCl Production in the Stomach , Gastrointestinal Hormones Role of Pancreas in Digestion

Muscle Physiology: Skeletal Muscle And Smooth Muscle, Muscle Proteins; Actin, Myosin, Tropomyosine, Troponins

Keywords: Respiratory mechanics and regulation, excretory function of liver and kidney, absorption of food, hormonal regulation, muscle Proteins, muscle contraction

4.0 Nutrition:

Concepts of Macro And Micro Nutrients, Essential Nutrients And **10hours** Their Classification.

Food Groups- Proximate Analysis Of Foods, Chemical And

Biological Analysis For Nutrients.

Food As Source Of Energy: Methods Of Determining Energy Value Of Foods, Calorimetry

Physiological Fuel Value: Daily Requirement Of Energy, High And Low Calorie Diets. Basal Metabolic Rate (BMR) Factors Affecting BMR, Specific Dynamic Action Of Foods. Energy Expenditure, NEAT (Non Exercise Activity Thermogenesis)

Keywords: essential and non essential nutrients, energy value, BMR

5.0 **Macronutrients**

Carbohydrates: Dietary Sources, Dietary Fiber, Essentiality Of Carbohydrates.

Proteins: Essential Amino Acids, Evaluation Of Nutritive Value Of Dietary Proteins, PER, BV, Nutritional Classification Of Proteins, Supplementary Value Of Proteins, Protein Calorie Malnutrition; Kwashiorkor And Marasmus.

Fats: Sources, Invisible Fat, Essential Fatty Acids, PUFA 16hours **Micronutrients:**

Vitamins: Fat Soluble And Water Soluble Vitamins, Pro-vitamins, Anti-vitamins, Dietary Sources, Daily Requirements, Structure And Function. Deficiency Symptoms Of B And C Vitamins And Fat Soluble Vitamins, Hypervitaminosis, Vitamin - Like Compounds. Minerals: Macro And Micro Nutrients, Sources, Requirements, Functions And Deficiency Symptoms.

Keywords: Macronutrients, Micronutrients

Water Metabolism: Distribution In Body, Function, Water 6.0 4hours Balances, Factors Affecting Water Balance.

Keywords: Water Balance

7.0 Diet: Recommended Daily Allowances, Special Nutrition For Infants, Children, During Pregnancy, Lactation And Old Age. Nutrition For Diabetes And Cardiovascular Disease Patients. Wellness Diets, Medeterranean Diet, Paleo Diet, Fitness Diets, 8hours Obesity And BMI. Diet And Inflammation, Anti-Inflammatory Diets. Keywords: special Diets, Recommended Daily Allowances Note: Course content involves 100% Theory

Bool	s for Reference:				
S1. No	Title of the bookName of the authorName of the publisher		Edition	Year of publication	
1.	Textbook of Biochemistry with Clinical Correlations	Thomas M. Devlin	John Wiley & Sons	7	2010
2.	Textbook of Medical Biochemistry	MN Chatterji & Rana Shinde	5		2011
3.	Textbook of Biochemistry for Medical Students	DM Vasudevan Sreekumari S Kannan Vaidyanathan	Jaypee Brothers Medical Publishers	6	2011
4.	Pocket Companion to Guyton and Hall Textbook of Medical Physiology	John E. Hall	Saunders	12	2011

5.	Handbook of Food and Nutrition	Dr. M. Swaminathan	Bappco	6	2010

Additional books for reference:								
S1. No	Title of the bookName of the authorName of the publisher		Edition	Year of publication				
1.	Guyton and Hall Textbook of Medical Physiology	John E. Hall	Saunders	13	2015			
2.	Fundamentals of Foods, Nutrition and Diet Therapy	Sumati R. Mudambi	New Age International Private Limited	6	2018			
3.	Food Science	B Srilakshmi	New Age International Private Limited	7	2018			

FIRST YEAR - SEMESTER - I

Course Title		PRINCIPLES OF CHEMISTRY								
Course Type	Soft C	Soft Core- Theory		48	Hours/Week		/Week 0		Credits	03
			Hours							
			Internal	C1+C2 = 15+15			3	0 Marks	100	
Course Code	A0320	Evaluation	External	Dura	tion	C3	03Hrs	3 7	0 Marks	100

COURSE OBJECTIVES (COs)							
CO No.	Course Objectives						
CO-1	Understand the stereochemistry, spatial arrangement of atoms/groups and apply it on the course of reactions and mechanism , prediction.						
CO-2	Describe the fundamental scientific principles in the subfields of chemistry and apply these principles to problems.						
CO-3	Solve problems, think critically and reason analytically as these are applied to scientific problems						
	MAPPING CLO'S WITH PSO'S AND CD'S						

MAPPING CLO'S WITH PSO's AND CD's								
CLO	Course Learning Outcomes	PSOs	CD's					
No.	On completion of the course the student will	Addressed						
	learn to							
CLO-1	Remember & Understand the stereochemistry, spatial arrangement of atoms/groups and apply it on the course of reactions and mechanism prediction.	PSO -1	Understand					
CLO-2	Analyse/Describe the fundamental scientific principles in the subfields of chemistry and apply these principles to problems.	PSO- 2	Analyse					
CLO-3	critically think & Solve problems, reason analytically as these are applied to scientific problems	PSO- 4	Apply					

Modules	COURSE CONTENTS	Duration
1.0	Bonding -covalent bond ,coordinate bond, coordinate bond formation in transition metals crystal field theory ligand field theory valence bond theory structure, bonding and special properties of	
	water iron in hemoglobin and cytochromes bonding of cobalt in vit-	
	B_{12} magnesium in chlorophyll chelates, types of ligands and	
	complexes	14hours
	Keywords: transition metals, theories, ligands	
1.1	Electrolytes And Non-Electrolytes- osmotic pressure reflection coefficient vapour pressure vapour pressure osmometer donnan membrane equilibrium	
	Electrodes -electrode potential ,hydrogen electrode, oxygen electrode	8hours
• •	Keywords: electrodes	
2.0	Stereochemistry -importance of stereochemistry position and order of groups around carbon geometric and optical isomerism absolute and relative configuration symmetry view of chirality relation between chirality and optical activity representation of chiral	
	structures by fischer structure and stereochemistry of glucose; anomer, epimer, stereoisomer, d and l, + and - r and s and stereochemistry of amino acids	6hours
	Keywords: stereomers, significance, chirality	
3.0	Mechanism of organic reactions- intermediates and rearrangements in organic reaction, reaction energetics classification of reagents and reactions effects of substituents on the benzene ring and the reaction mechanism reaction rates, order	
	and Molecularity of reaction	14hours
	Keywords: organic reactions	
4.0	Mechanisms and stereochemistry -substitution (electrophilic and nucleophilic - sn ¹ and sn ² reactions) addition reactions, elimination	
	reactions, rearrangement reactions, ester hydrolysis, property of Aromaticity and resonance	14hours
5.0	Keywords: substitution, addition	
5.0	Heterocyclic compounds -chemistry and biological Occurance of the following Furan, Indole, Thiazole, Pterine, Pteridine,	01
	Isoalloxazine, Pyrrole, Porphyrins, Heme <i>Keywords: heterocycles, significance</i>	8hours
	Note: Course content involves 100% theory	

Sl.No	Title of the book	le of the book Name of the author Publisher		Edition	Year of publication	
1.	Inorganic Chemistry: Principles of Structure and Reactivity	Huheey / Medhi	Pearson Education India	4	2006	
2.	Concise Inorganic Chemistry	J.D. Lee	Oxford University Press;	5	2008	
3.	Organic Chemistry	Morrison Boyd & Bhattacharjee	Pearson Education India	7	2010	

S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication
1.	A Textbook of Organic Chemistry	Bahl Arun & Bahl B.S	S Chand & Company	22	2016
2.	Principles of physical chemistry	B.R. Puri, L.R. Sharma, M.S. Pathania	Vishal Publishing Co.	47	2017
3.	Chemistry for Degree Students	R L Madan	S Chand Publishing	3	2011

FIRST YEAR - SEMESTER - I

Course Title	BIOTECHNOLOGY										
Course Turse	Soft Core- Theory		Total	48	Hours/Week		03	Credits	03		
Course Type			Hours			-					
					Internal	C1-	1+C2 = 15+15		30) Marks	100
Course Code	A0330	Evaluation	External	Durati	on	C3	03Hrs	s 7	0 Marks	100	

	COURSE OBJECTIVES (COs)					
CO No.	Course Objectives					
CO-1	To impart knowledge on foundation of modern biotechnology					
CO-2	To explain the principles that forms the basis for recombinant DNA technology					
Mapping of CLOs with PSOs &CDLs						

CLOs No.	Course Learning Outcomes (CLOs) On completion of the course the student will learn to	PSOs Addressed	CLDs					
CLO-1	Understand the difference between old biotechnology and modern biotechnology.	PSO-1	Understand					
CLO-2	Provide examples of current applications of biotechnology and advances in the different areas like medical, microbial, environmental, bioremediation, agricultural, plant and animal.	PSO-4	Application					
CLO-3	Explain the concept and application of monoclonal antibody technology	PSO-2	Application					
CLO-4	Provide examples on how to use microbes and mammalian cells for the production of pharmaceutical products.	PSO-1	Analyse					

Modules

COURSE CONTENTS

Duration

Cell culture techniques: Introduction to plant and animal 1.0 tissue/cell culture, Laboratory design, aseptic conditions, equipments and materials for cell culture. Different constituents of culture medium - types of media and their applications Plant cell culture: Micro propagation, callus culture, haploid 12hours embryogenesis, somatic hybridization, production, somatic Protoplast fusion, cybridization, somaclonal variation, Production of disease free plants. Keywords: Media, aseptic condition, transfer methods 2.0 Animal cell culture: Culture techniques, media, preparation of primary culture, disaggregation of tissue and primary cultures, chick embryo, HUVEC, characterization of cultures, ploidy, cell 8hours doubling time, cell surface markers Keywords: Media, aseptic condition, transfer methods

3.0 Cell lines: Characteristics and routine maintenance, cell separation techniques, measurement of viability and cytotoxicity, scaling-up of animal cell culture, bioreactors used in animal cell culture, amplified cultures, continuous cultures and their applications *Keywords: sub-culturing, media, aseptic condition,* 8 hours

4.0 Fermenter: Stirred fermenter, microcarrier, encapsulation, hollow fiber chambers packed, cell immobilization techniques, glass bead reactors, organ and histotypic cultures, three-dimensional culture, tissue engineering eg skin, characterization of the cultured cells, measuring parameters of growth, cell synchronization, somatic cell fusion, cell cloning, cryopreservation

10hours

Keywords: Types, growth parameters, reactors Note: Course content involves 100% Theory

Books for reference:								
S1.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication			
1.	Biotechnology	U Satyanarayana	Books & Allied Ltd	1	2008			
2.	Plants from Test Tubes: An Introduction to Micro propagation	Lydiane Kyte & John Kleyn	Timber Press, Incorporated	3	1996			
4.	A Textbook of Biotechnology	R C Dubey	S Chand	5	2014			
5.	Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications	R. Ian Freshney	Wiley- Blackwell	6	2010			

Addi	Additional books for reference:								
S1. No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication				
1.	Practical Book of Biotechnology & Plant Tissue Culture	Madhavi Adhav & Nagar Santosh	S Chand & Co Ltd	1	2010				
2.	Animal Cell Culture: Essential Methods	John M Ed Davis	John Wiley & Sons	1	2010				
3.	Introduction to Plant Cell, Tissue and Organ	Sunil D. Purohit	PHI Learning	1	2013				

FIRST YEAR - SEMESTER -II										
Course Title	e Title CELL & MENBRANE BIOLOGY									
Course Type	Hard Core- Theory		Total	48	Hours/Week		Veek 03		Credits	03
Course Type			Hours							
Course Code			Internal	C1+C2 = 15+15				30 Marks	100	
Course Code	B0210	Evaluation	External	Durati	on	C3	03H	[rs	70 Marks	100

	COURSE OBJECTIVES (COs)					
CO No.	Course Objectives					
CO-1	Study structure and functions of bio membranes, structure-function relationships, membrane biogenesis					
CO-2	Demonstrate knowledge on membrane associated cellular events					

	MAPPING CLO'S WITH PSO's AND CD's							
CLO No.	Course Learning Outcomes (CLOs) On completion of the course the student will learn to	PSOs Addressed	CD's					
CLO-1	Appreciate the Evolution In Concept Of Membrane Models	PSO-3	Analyze					
CLO-2	Understand intracellular targeting of molecules and biogenesis of sub-cellular organelles	PSO-2	Understand					
CLO-3	Understand the techniques used to study membrane structures	PSO-1	Apply					
CLO-4	Understand the mechanism underlying neurotransmission, muscle contraction and cell cycle	PSO-4	Understand					

Modu	les	COURSE (CONTENTS		Duration			
1.0	composition phase, pha Models of Davson mo models,	Biomembranes: physicochemical properties of biological membranes; compositions, lipid phases-hexagonal i and ii, Micellar phase, Bilayer phase, phase transition temperature. Supra molecular organization. Models of membrane; Gorter and Grendel's experiment, Danielle - Davson model of membrane. Evolution in concept of membrane models, singer and Nicholson's model. newer models <i>Keywords: Membrane Models, molecular organization Models</i>						
2.0	Membrane lateral diffu membrane	Asymmetry: lipids, pro usion. Biogenesis of lip domains; Caveolae, ra ntracellular Targeting	oteins and carbohydra pids and proteins, po afts, membrane lipid	ates and th plarized ce and prot	lls, ^{ein} 8hours			
3.0	Methods O Phospholipa Translocati Liposome Membranes Fusion.	Properties Of Membrane f Study Of Membrane ases, Chemical on, TNBS Reagent, Fre Preparations And App b. FRET, FRAP, Single 1 : Principle and app	Structure: Lipid Tran Methods, Amino eze Fracture And Fr dication, Function C Particle Tracking, Cal	nsfer Protei -Phospholi eeze Etchi Of Sterols orimetry, C	pid ng, In 8hours Cell			
4.0	analyzing Membrane Diffusion Transporter Bacterial Pl exocytosis, Ion Channe Ion Channe	<i>membrane structure</i> Transport: Laws of Di and Facilitated Diffu- rs, Na ⁺ -K ⁺ ATpase (Stru- nosphotransferase Syste Membrane flow hypothe els: Gated Ion Channel, I Transporters, carrier	ffusion Across Membr sion, Active Transp cture And Mechanis em, Receptor Mediated esis ls-Ligand and Voltage conophores	ranes, Sim ort, Gluce m of Acti l Endocytos e, Non- Ga	ple ose on) sis, 8hours ted			
5.0	Neurotrans Action Po Postsynapti NMDA, Stru	ns Of Nerve Conduct mitters, Mechanisms C tential, Patch Clamp ic Membranes. Nicotinio acture And Function.	of Nerve Conduction, o Technique. Pre-se c And Muscarinic Ner	Resting A ynaptic A urons. GAI	and 8hours			
6.0	Muscle Co Muscle Cor Cell Cycle Points, Cdl Apoptosis Keywords: of a cell, p	Structure and mechan ntraction: Structure O ntraction, Role Of Calo and its Regulation: and Cyclins, Cell Cyc Molecular mechanism athways of apoptosis se content involves 10	f Skeletal Muscle, Mo cium, Calmodulin, Ph Phases Of The Cell cle Control, Aging and as in muscles, ,mole	echanisms lospholamb Cycle, Cho d senescen	oan eck ce, 8hours			
Books fo	or Reference:							
S1.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication			
	Lehninger Principles of Biochemiatry	David L. Nelson And Michael M. Cox	W.H. Freeman & Company	4	2004			
)	Biochemistry							

Geoffrey Zubay

2.

Biochemistry

1998

4

WBC Publishers

S1.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication	
1.	Fundamentals Of Biochemistry, Life At The Molecular Level.	Donald Voet, Judith G. Voet, Charlotte W. Pratt	Wiley	4	2012	
2.	Outlines Of Biochemistry	Eric E. Conn, P.K. Stumpf, G Bruening, R.H. Doi	Wiley	5	2006	
3.	Harper's Biochemistry	Robert K. Murray, Daryl K. Grammer, Peter A. Mayer, Victor W. Rodwell	Appleton & Lange	27	2006	

FIRST YEAR - SEMESTER -II

Course Title		MOLECULAR BIOLOGY								
Course Trees	Hard Core-Theory		Total	48	Hours/Week		03 Credits		03	
Course Type Hard		Core-Theory	Hours							
	D 0000	Errelanetien	Internal	C	C1+C2	2 = 15	+15	3	30 Marks	100
Course Code	B0220	Evaluation	External	Dura	tion	C3	03H	rs 7	70 Marks	100

	COURSE OBJECTIVES (COs)							
CO No.	Course Object	tives						
CO-1	Understand Regulation.	the	mechanism	of	Prokaryotic	replication,	transcription	and
CO-2	Understand regulation.	the	mechanism	of	Eukaryotic	replication,	transcription	and
CO-3 Understand the features of Genetic code and translation mechanism.								
CO-4	Understand a	und tl	he cellular me	cha	nism of Gene	expression a	nd regulation.	

	MAPPING CLO'S WITH PSO's AND CD	's	
CLO No.	Course Learning Outcomes On completion of the course the student will learn to	PSOs Addressed	CD's
CLO-1	Explain the mechanism of Prokaryotic replication, transcription and regulation.	PSO- 1	Analyse
CLO-2	Describe the mechanism of Eukaryotic replication, transcription and regulation.	PSO- 2	Remember
CLO-3	Enumerate the features of Genetic code and translation mechanism.	PSO- 2	Understand
CLO-4	Evaluate the cellular mechanism of Gene expression and regulation.	PSO -3	Evaluate
CLO-5	Understand the concept of Protein- DNA interactions. And molality.	PSO -4	Understand

COURSE CONTENTS Modules Duration 1.0 **Introduction:** historical perspective, composition of rna and dna. bases, chargaff s rule. types of rna. isolation and purification of rna and dna, structure of rna and dna, central dogma of molecular biology. dna as genetic material, experiment of griffiths, avery and colleagues, hershey and chase experiment. rna as genetic material of viruses, frenkel-conrat experiment **6hours** Key words: Purines, Pyrimidines, N^{14} , Genetic content, Bacteria 2.0 DNA-Anti parallel Nature: nearest neighbour base frequency analysis. replication of dna, semi conservative nature; messelson and stahl experiment. replication of double stranded dna, direction of replication, cairn's experiment, semi discontinuous replication, okazaki fragements. dna polymerase i ii and iii, dna ligase, dna topoisomerases. fidelity of replication, trombon model, translesion synthesis (dna pol iv and v). replication in viruses, rolling circle model, single stranded dna virus. replications of mitochondrial 10hours

Key words: Replication, enzymes, Virus

dna

3.0 Transcription: colinearity of genes and proteins, rna polymerase i, ii and iii. rna biosynthesis in prokaryotes and eukaryotes; initiation, elongation and termination. abortive cycling. rna dependent rna synthesis, rna replicase of qßvirus. processing of eukaryotic rna, cap addition, intron splicing, poly a tail addition, rna editing. processing of trna and mrna transcripts. enzymes in dna and rna degradation: nucleases, ribonucleases, classification and role.

Key words: Post transcriptional events, enzymes

4.0 Translation: genetic code, triplet codon, universality features of the genetic code, assignment of codons, studies of khorana, nirenberg, triplet binding techniques, degeneracy, wobble hypothesis, evolution of genetic code and codon usage, variation in the codon usage.

Key words: Codes, codons, Bias

- **5.0** 3d structure of prokaryotic and eukaryotic ribosomes, ribosomal protein synthesis; initiation elongation and termination. role of mrna and trna. amino acyl trna synthesis and its role in translation accuracy. internal ribosome entry sites. *Key words: Translation, factors*
- 6.0 Post Translation Modification Of Proteins, signal cleavage, disulphide bond formation, O and N-glycosylation, folding of nascent protein, role of chaperones, attachment of glycosyl anchor, and other modifications.dna binding protein motifs-zinc finger, 8hours leucine zipper, h-t-h motif.

Key words: Significance of PTM Note: Course content involves 100% theory

6hours

8hours

10hours

S1.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication	
1.	Genes VII	Lewin B	Oxford univ. Press,	5	1994	
2.	Molecular Biology	Robert F. Weaver	McGraw-Hill	4	2008	
3.	Cell and Molecular Biology-Concepts andexperiments	Karp, G.	Wiley & son	2	1999	
4.	The Cell-A Molecular Approach.	Cooper, Geoffrey M	Sinauer Associates	2	2000	
5.	Cell and Molecular Biology.	De Robertis, E.D.P. and De Robertis	B. I. Waverly pvt. Ltd.	8	1995	

S1.No			Name of the Publisher	Edition	Year of Publication	
1.	Molecular cell biology	Harvey Lodish& David Baltimore.	WH. Freeman and company	4	2000	
2.	Principles of Cell and Molecular Biology	Kleinsmith, L. J. & Kish, V.M	Harper Collins Publishers	2	1995	
3.	Molecular cell biology	Harvey Lodish& David Baltimore.	WH. Freeman and company	6	2005	

FIRST YEAR-II SEMESTER

Course Title		CARBOHYDRATE & LIPID METABOLISM								
Course Type	Hard Core-Theory		Total Hours	48	Hours/Week		03	Credits	03	
			Internal		C1+C2 = 15+15				30 Marks	100
Course Code	B0230	Evaluation	External	Dura	ation	C3	031	Hrs	70 Marks	100

	COURSE OBJECTIVES (COs)						
CO No.	Course Objectives						
CO-1	understand the metabolism of pathways that yield energy from carbohydrate & lipid						
CO-2	CO-2 Analyze & understand the diversity of metabolic regulation involved carbohydrate metabolism						
CO-3	Analyze & understand the metabolic regulation involved lipid metabolism						
CO-4 understand and analyze how these biochemical processes are integrated with lipids & carbohydrate metabolism							
010	MAPPING CLO'S WITH PSO's AND		OD ²				
CLO	Course Learning Outcomes	PSOs Addressed	CD's				
No.	On completion of the course the student will learn to	Addressed					
CLO-1	Understand and explain major pathways like PSO-1 Remember Glycolysis, TCA cycle, Urea cycle etc.						
CLO-2	Understand biosynthesis and elongation of fatty acids.	PSO- 2	Understand				

	nalyse bioenergetics of carbohydrates, fatty acids c. in plants and animals	PSO- 3	Remember
CLO-4 ur pr	nderstand and analyze how these biochemical ocesses are integrated with lipids & carbohydrate etabolism	PSO -4	Analyse
Modules 1.0	COURSE CONTENTS Introduction: Catabolism, Anabolism, Catabol	ic. anabolic	Duration and
	 amphibolic pathways Carbohydrate Metabolism :Cellular ingest Glycolysis, Energetics regulation , pathways Pyruvate, lactate, ethanol, Gluconeogenesis, n cycle, glucose paradox , citric acid cycle its regularies, Anaplerosis, Glyoxylate cycle , HMP Interconversion of Hexoses , utilization of non uptake and metabolism of fructose Biosynthesis of Sucrose, Starch , Glycogen 	of utilization regulation, lation, Energe shunt pathy	n of Cori etics 14hours way,
2.0	Keywords: Metabolic pathways, non glucose so Hormonal Regulation: Effect and action of Ir	isulin ,Gluca id hormone abolism in I abetes Melli ls, Phospholi	& & 6hours itus:
	regulation, Knoop's experiment, saturated and u acids Energetics And Biosynthesis of Fatty Acie Synthetase Complex, Chain Elongation And Pathways In Plants And Animals : Conversion Arachiodnante (Scheme Only), Ω3 And Ω6 Fatty Conversion To Pro/Anti Inflammatory Mediators Lipase, Hormone Sensitive Lipase, Phosp Sphingomyelinase.	ds : Fatty d Desaturated of Linoleate Acids And T , Regulation pholipases	fatty Acid tion, 10hours e to 'heir
4.0	Keywords: Biosynthesis & degradation of lipid Biosynthesis, Degradation & Regulations: Circulating Lipids: Chylomicrons, HDL, LDL An Cholesterol Transport By HDL, Oxidized Li Metabolism : Foam Cell Formation, Regul Cholesterol, Triglycerides, LDL And HDL, Cholester Conversion Of HMG CoA To Cholesterol And Other Keywords: Circulating Lipids, Foam Cell Form	Metabolism d VLDL, Rev pids And T ation Of B rol Biosynthe Lipids	rerse Their lood 9hours
5.0	 Phospholipid Biosynthesis and Regulations: and inter conversion, biosynthesis of phospholipid ether lipids and glycolipids, degradation and gangliosides and cerebrosides. biosynthesis of thromboxanes, leukotrienes Integration of Metabolic Pathways: Integration and Lipid Metabolism , their Regulation and Manip 	Denovo path ls, Sphingolig biosynthesis prostagland of Carbohyd	oids, s of 9hours lins,

Keywords: inter conversion, metabolic integration, ecoisonoids

Note: Course content involves 100% Theory

S1. No	Title of the book	Name of the author	e	Name of the publisher	e	Edition	Year of publication										
1.	Lehninger Principle Of Biochemistry	s David L. Nelso And Michael I Cox		W.H. Freeman & Company		4	2004										
2.	Biochemistry	Lubert Stryer,Jeremy Berg,John L Tymoczko,		Freeman & Co, New York,		5	1988										
3.	Biochemistry	Geoffrey Zuba	ay	WBC Publishers		3C Publishers 4											
4.	Fundamentals of Biochemistry	Deb A.C	Deb A.C		l	3	1989										
Additi	onal Books for Refe	rence:															
S1.No	Title of the book	Name of the Author	N	ame of the Publisher	E	dition	Year of Publicatior										
1.	Fundamentals of biochemistry	Jain, J.L	p	S.Chand publication				S.Chand publication								6	2005
2.	Concepts in cell & molecular biology	Rastogi S.C, V.N. Sharma, Anuradha Tanden	I	New age publishers		3	2010										

FIRST YEAR-II SEMESTER

Course Title	Cell Bi	Cell Biology, Molecular Biology, Carbohydrate and Lipid Metabolism								
Course Turne	Hand Can	e- Practical	Total	48	Ho	ours/	Week	06	Credits	03
Course Type Hard C		e- Flactical	Hours							
Occurre Octo	DD010		Internal	C1	+C2	2 = 15	+15	3	30 Marks	100
Course Code	BP210	Evaluation	External	Durati	on	C3	03Hr	s 7	70 Marks	100

	COURSE OBJECTIVES (COs)							
CO No.	CO No. Course Objectives							
CO-1	Plan experiments, write protocols, understand and interpretation experimental results pertaining to Metabolism, Molecular Biology and Cell Biology							
CO-2	Perform logical reasoning and criticizing data							

MAPPING CLO'S WITH PSO's AND CD's						
CLO	Course Learning Outcomes	PSOs	CD's			
No.	On completion of the course the student will learn to	Addressed				
CLO-1	Isolate and purify Nucleic acid	PSO- 1	Understand			
CLO-2	Make use of biochemical techniques in studying membrane function	PSO -4	Understand			
CLO-4	Analyze activity of clinically significant enzymes	PSO- 4	Application			

Modules	COURSE CONTENTS	Duration
1.0	Cell Biology	
1.1	Erythrocyte lysis profile in sodium chloride solution	4hours
1.2	Erythrocyte cholinesterase activity and inhibition by pesticide residues	4hours
1.3	Erythrocyte membrane protein electrophoresis- SDS, PAGE molecular weight calculation	4hours
1.4	Glucose uptake in Yeast cells. Kinetics of uptake	4hours
2.0	Molecular Biology	
2.1	Isolation of DNA and RNA from biological sources	4hours
2.2	Estimation of DNA by diphenylamine reagent	4hours
2.3	Estimation of RNA by orcinol reagent	4hours
2.4	Electrophoresis of DNA and RNA	4hours
3.0	Carbohydrate and Lipid Metabolism	
3.1	Determination of Pyruvate	4hours
3.2	Amino transferase reaction	4hours
3.3	Determination of Lactate, activity of LDH	4hours
3.4	Determination of Phospholipase and Lipase activity, Lipoprotein Lipase assay Note: Course content involves 100% Practicals	4hours

Books for reference:

S1. No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication
1.	Text book of Medical laboratory technology	Praful. B. Godkar	Bhalani Publishing house	3, Volume I and II	2014
2.	Biochemical Methods	Sadasivam, S. and Manickam, A	New Age International (P) Ltd	3	2010

Additional books for reference:						
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication	
1.	Medical Laboratory Technology	Kanai L. Mukerjee	Tata McGraw Hill Education	2	2011	

FIRST YEAR-II SEMESTER

Course Title		HORMONES AND CELL SIGNALLING								
Course Type	Soft Core- Theory		Total Hours	48	Hours/Week		03	Credits	03	
0	D0010	E la la contra de	Internal	C	$1+C_2$	2 = 15	+15	3	30 Marks	100
Course Code	B0310	Evaluation	External	Durat	tion	C3	03H	rs 7	70 Marks	

	COURSE OBJECTIVES (COs)			
CO No.	Course Objectives			
CO-1	Understand the Structure and functions of Hypothalamic and pituitary hormones.			
CO-2	Understand the hormonal regulations of thyroid and parathyroid glands.			
CO-3	Understand the synthesis, secretion, metabolism, regulation and biological effects of adrenal hormones			
CO-4	4 Understand the structure, metabolism and biological actions of gonads and pancreatic hormones.			
CO-5	Understand the Fundamentals concepts of signal transduction and signaling pathways			

	MAPPING CLO'S WITH PSO's AND CD's						
CLO	Course Learning Outcomes	PSOs	CD's				
No.	On completion of the course the student will	Addressed					
	learn to						
CLO-1	Explain various hormones secreted by endocrine glands and their functions.	PSO -1	Understand				
CLO-2	Understand the anatomy of the endocrine system.	PSO-2	Remember				
CLO-3	Understand the basic properties of hormones.	PSO-2	Understand				
CLO-4	Explain the role of the hormones in maintaining bodyfunction.	PSO -3	Remember				
CLO-5	Understand and explain the major endocrine disorders	PSO -4	Apply				

Modules

COURSE CONTENTS

Duration

- 1.0 Endocrine System: Endocrine organs in man. Location and inter relationship of endocrine glands in man; hormones produced by hypothalamus, pituitary, thyroid, parathyroid, pancreas, adrenals, gonads. Hypo and hyper production of hormones secreted by; pituitary, thyroid, pancreas, adrenals and gonads. Heart and kidney as endocrine organs
 Key words: Hormones and organs
- 2.0 Hormones produced by hypothalamus; GRH, somatostatin, TRH, CRH, GnRH. Hormones of anterior, posterior and median lobes. Pro-opiomelanocortin. Hormones produced by testes and ovaries, menstrual cycle.
 Key words: POMC, reproductive hormones, hypothalamus, pituitary
- **3.0** Regulation of hormone production and release: hypothalamus-pituitary-target organ axis and regulation by feedback mechanism. **4hours** Conversion of cholesterol to steroid hormone. *Key words: Inhibition, steroid hormone*

4.0	Mechanism of hormone action: Peptide hormones: General mechanisms of cell signaling by hydrophilic factors, transmembrane receptors, G protein coupled receptors, a_i and a_s receptor tyrosine kinase. Visual cycle, gustatory and auditory signals. Ion Channel receptors, Sodium channel <i>Key words: Receptors, signal transduction</i>	14hours
5.0	Second messengers: IP ₃ , DAG, cAMP, protein Kinases. Nitric oxide; generation and action. Growth factors: Structure, mechanism of action and receptors of EGF, PDGF. Structure and function of insulin receptor. <i>Key words: NO synthase, insulin, endothelium, platelets</i>	6hours
6.0	Mechanism of action of steroid hormones: Steroid receptors, mechanism of action of estrogen receptors. Receptor down regulation, desensitization and up regulation. <i>Key words: Steroid receptors, Regulation</i>	6hours
7.0	Pineal gland, melatonin and circadian rhythm. Chemistry and action of prostaglandins, Prostacyclins and Thromboxanes. Eicosanoidreceptors. <i>Key words: lipid mediators, melatonin, serotonin</i>	6hours
8.0	 Insect hormones: Structure and function of molting hormone, ecdysone, juvenile hormones, Pheromones: Mechanism of perception and action. Special case of communication in honey bees -dance language Key words: Significance of insect hormones, communication 	8hours

Note: Course content involves 100% theory

Sl.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication
1.	Biochemistry of Signal Transduction and Regulation	Gerhard Krauss	Wiley VCH	3	1999
2.	Concepts in cell & molecular biology	Rastogi S.C, Sharma, Anuradha Tanden	New age publishers	3	2010

Additional books for reference:

S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication
1.	Cell Biology, Genetics, Molecular Biology, Evolution & Ecology	Verma P.S. Agarwal V.K	S Chand publication	5	2006
2.	Biochemistry of Signal Transduction and Regulation	Gerhard Krauss	Wiley VCH	5	2014
3.	Biochemical Messengers: Hormones, neurotransmitters and growth factors	D. Hardie	Springer	2	2012

FIRSTYEAR-II SEMESTER

Course Title		BIOPHYSICS						
Course Type	Soft Core- Interdisciplinary		Total Hours	48	Hours/Week	03	Credits	03
Course Code	B0510	Evaluation	Internal		C1+C2 = 15+15		30 Marks	100

	COURSE OBJECTIVES (COs)					
CO No.	Course Objectives					
CO-1	Understand the basic concepts of atomic structure and explain the fundamental principles & origin of spectral lines					
CO-2	Describe the structure of cell membrane, membrane transport systems and membrane potential.					
CO-3	Relate and differentiate various biopotential measuring instruments					
CO-4	differentiate working principle, instrumentation and applications of various bio- analytical instruments					
CO-5	design an experiment with step-by-step instructions to address a research problem or bio-analytical practical.					

	MAPPING CLO'S WITH PSO's AND CD's								
CLO No.	Course Learning Outcomes On completion of the course the student will learn to	PSOs Addressed	CD's						
CLO-1	Recall the basic concepts of atomic structure and explain the fundamental principles & origin of spectral lines	PSO-1	Understand						
CLO-2	Recall and describe the structure of cell membrane, membrane transport systems and membrane potential.	PSO-2	Remember						
CLO-3	Relate and differentiate various biopotential measuring instruments	PSO-2	Apply						
CLO-4	Identify and differentiate working principle, instrumentation and applications of various bio- analytical instruments	PSO-3	Analyse						
CLO-5	Reproduce and design an experiment with step-by- step instructions to address a research problem or bio-analytical practical/project	PSO-4	Apply						

Modules

COURSE CONTENTS

Duration

1.0 Introduction :The broad characteristics of a typical cell, cell organelles, the molecular composition of a cell Biological molecules and their general character, cell behavior, viruses, genetics and biophysics

Molecular physics: The conservation of energy in biological process, metabolism or chemical energy turnover

Statistical thermodynamics and biology :The theory of **16hours** absolute reaction rates, thermal inactivation, the entropy transfer of living organisms

Information theory: Relation between information and entropy, information content of some biological systems, information content of a bacterial cell

Keywords: cell, Statistical thermodynamics

2.0 Structure Analysis of Biomolecules: Determination of size and shape of molecules: Introduction - random motion, diffusion, sedimentation, Optical methods: rotational diffusion and birefringence

X-ray analysis and molecular structure: Diffraction of X-rays, crystal structure and the unit cell, Diffraction patterns of some protein fibers, The structure of globular proteins, The structure of polypeptide chains - the pleated sheets and beta-keratin, the alpha-helix and alpha-keratin, The structure of nucleic acids polymers, the structure of nucleoproteins, the analysis of virus structures

Keywords: Optical methods, X-ray analysis

3.0 Molecular Spectroscopy: Absorption spectroscopy and molecular structure: Vibrations of polyatomic molecules, characteristic bond frequencies, Raman spectra and the dipolar nature of amino acids, The vibrational spectra of proteins, the energy levels of hydrogen bonded structures, Absorption coefficient and cross section, Experimental techniques for absorption measurements, absorption by oriented dipoles, dichroic ratios of proteins and nucleic acids, electronic spectra of polyatomic molecules, Ultraviolet absorption by proteins and nucleic acids, the fine structure in spectra, polarized ultra violet light spectroscopy, Electron spin resonance (qualitative), nuclear magnetic resonance (qualitative)

Keywords: vibrational spectra, Ultraviolet absorption Note: Course content involves 100% Theory

S1. No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication
1.	A Guide to principles and techniques of practical biochemistry	K.Wilson & K.Goulding	Cambridge University Press	3	1994
2.	Principles and techniques of practical biochemistry	Bryan L.Williams and Keith Wilson	Cambridge University Press	4	1996
3.	Principles &Techniques of Biochemistry and Molecular Biology	Keith Wilson & John Walker	Cambridge University Press	7	2010
4.	Introductory Practical Biochemistry	S.K. Sawhney & R. Singh	Alpha Science International Ltd	5	2005
5.	Introduction to spectroscopy	Pavia	Cengage Learning India Private Limited	3	1999

16hours

16hours

Sl.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication
1.	An Introduction to Practical Biochemistry	David Plummer	Mc Grow Hill education	3	2011
2.	Text book of Biophysical Chemistry	Upadyaya & Upadyaya	Himalaya Publishing House Pvt. Ltd.	4	2016
3.	Instrumental Methods of Analysis	Muralidhara Rao	CBS Publishers & Distributors	1	2013

FIRSTYEAR-II SEMESTER

Course Title PHARMACOLOGY OF PLANT P					ANT P	RO	DUCTS	S			
Course Type		Soft Core- Theory- ID		Total Hours	48	Hours Weel		03	Cı	redits	03
0	1		D 1 /:	Internal	C1+C	-C2 = 15+		5	30	Marks	100
Course C	ode	B0530	Evaluation	External	Duration	C3	03	Hrs	70	Marks	100
	COURSE OBJECTIVES (COs)										
CO No.	Cou	ourse Objectives									
CO-1	Unc	lerstand	erstand the traditional uses of plants as medicines								
CO-2		n knowl elopment	knowledge in pharmacokinetics and pharmacodynamics in drug								
			Mapping	of CLOs w	ith PSOs &	¿CDL s					
CLOs No	•	Cou	ırse Learning	g Outcom	es(CLOs)			PSOs		CLI	Ds
	0	On comp	letion of the lea	course th rn to	e student	will	Ac	ldress	ed		
CLO-1 Understand the extraction techniques, isolation plant derived products			on of	f PSO-1 Understa		stand					
CLO-2		Understand the importance of phytochemicals and other plant products in drug formulation.				PS	0-2		Applica	ation	
CLO-3	St	andardiz	ation of the p	lant based	drugs		PS	0-4		Applica	ation

Modules	COURSE CONTENTS	Duration
1.0	Introduction to basic concepts of pharmacology: Definition, sources of drugs & routes of drugs administration, Therapeutic drug monitoring system-Basic principles of TDM, Therapeutic index, Prodrug concepts Plant products as drugs: Historical aspects of plant usage, Whole plants, Plant extracts, Tinctures, Teas, Portions <i>Keywords: Prodrug, Therapeutic drug</i>	9 hours
2.0	Terpenes- mevalonate, Phenols- CBD, Ferulic acid, Ellagic acid, Tannins- gallic acid, Flavonoids – Quercetin, Alkaloids- nicotine, caffeine, Nitrogenous Compounds <i>Keywords: Terpenes, tannins, Alkaloids</i>	9hours
3.0	 Extraction and characterization of bioactive components from plants: Biochemical action of some phytochemicals- Quercetin, Ellagic acid, Curcumin Plants for treatment of diseases: Diabetes, CVD, Alzheimers, Cancers Drug delivery systems: Sustained release, Enteric coated formulations liposome and nanoparticles 	9 hours
4.0	<i>Keywords: Extraction and characterization of bioactive components</i> Pharmacokinetics: Basics of pharmacokinetics, Calculation of pharmacokinetic estimates, Compartment models used in pharmacokinetics (oral and intravenous), Compartment fitting (one comp & two comp),Pharmcodynamic / pharmacokinetic (PK/PD) correlation Pharmacodynamics: Types of action, Mechanism of drug action Drug receptor interaction with examples: Agonist, Antagonist, Partial agonist	9hours
5.0	 Keywords: Pharmacokinetics, Pharmacodynamics Clinical Trials: Clinical evaluation of new drug, Phases of clinical trial, Ethics and protocol, Preparation of clinical trial, New drug development process and drugs registration AYUSH and Ayurvedic drugs Pre-Clinical Pharmacokinetic and Dynamic studies: Lipinski's rule for drug like molecule, High throughput screening (<i>invitro and invivo</i>) for preclinical pharmacokinetic and pharmacodynamic studies Keywords: Clinical Trials Note: Course content involves 100% Theory 	12 hours

Books for reference:

S1.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication
1.	Textbook of Pharmacology	Barar F S K	S Chand & Company	1	2012
2.	Text Book of Phytochemistry	Iqbal A	Discovery Publishing House Pvt. Ltd.	1	1993
3.	Pharmacognosy and Phytochemistry: v. II	Vinod D. Rangari	Career Publications	2	2009
4.	Medicinal Plants: 2: Phytochemistry, Pharmacology and Therapeutics	V. K. Gupta , Dr. Anpurna Kaul & Surjeet Singh	Daya Publishing House	2	2012

Additional books for reference:											
S1.No	Title of the book	Name of the author	Name of the publisher	Editi on	Year of publication						
1.	Essential of Pharmacotherapectuics	Barar F S K	S Chand & Company	1	2000						
2.	Review of Pharmacology	Gobind Rai Garg & Sparsh Gupta	Jaypee Brothers	12	2018						
3.	Medical Pharmacology	Padmaja Udaykumar	CBS publishers & distributors	5	2016						

SECOND YEAR-III SEMESTER

Course Title	NITROGEN METABOLISM									
Course Type Hard Core- Theory		Total	48				03	Credits	03	
		Hours	70	Ho	ours/W	'eek	00	Cicuits	00	
0	00010		Internal		C1-	+C2 =	15+15	3	0 Marks	
Course Code	C0210	Evaluation	External	Dura	ation	C3	03Hr	s 7	70 Marks	100

	COURSE OBJECTIVES (COs)								
CO No.	Course Objectives								
CO-1	Describe the modes of nitrogen fixation (both biological and abiological)								
CO-2	Explain the steps involved in nitrogen fixation by free living organisms &								
	leguminous plants								
CO-3	Describe the assimilation of nitrate and ammonia by plants								
CO-4	Describe amino acid synthesis								

MAPPING CLO'S WITH PSO's AND CD's

CLO No.	Course Learning Outcomes On completion of the course the student will	PSOs Addressed	CD's
	learn to		
CLO-1	Explain the plant tissue structure, transport mechanism	PSO-2	Understand
CLO-2	Explain the role of the nitrogen cycle in plants	PSO-3	Apply
CLO-3	Describe amino acid synthesis	PSO-1	Understand

Modules

COURSE CONTENTS

Proposed Course Content

Duration

 1.0 Nitrogen Metabolism: Importance Of Nitrogen In Biological Systems, Nitrogen Cycle. Nitrogen Fixation; Symbiotic And Non-Symbiotic, Nitrogenase Complex, Energetics And Regulation. Formation Of Root Nodules In Legumes. Assimilation Of Nitrate And Ammonium Ion. Key words: Plant system, atmosphere

8hours

2.0	Proteosome Biosynthes Degradation Non Riboso Biosynthes	General Mechanism Pathway, Lysos is Of Glycoproteins n Of Heme And Porp mal Peptide Synthes is Of Creatine : protein degradat	omal Pathway. And Proteoglycans ohyrins. sis: Glutathione, G	Degradation A Biosynthesis A ramicidine.	Ind
3.0	General Regulation Desulphura	Mechanisms of s: Deamination, ation, Degradation A ogenic And Glucoger	Amino Acid Transamination, And Biosynthesis C	Metabolism A Decarboxylati	,
4.0	Regulation branched transglutan born error alkaptonur	Of Amino Acie chain amino acids ninase cycle, gluta rs of amino acie ia, maple syrup urir : Disorders, inhibi	s, aromatic amine mate dehydrogena d degradation; ne.	o acids, histidi ase, urea cycle.	ne, in
5.0	acids, pur pathways, pyrimidines conversion of methotre	nd Pyrimidines: p ines and pyrimidi de novo biosynt s and regulations. of nucleotides to d exate :Cancer, syndrome	ines, uric acid thetic pathways gout and lysch eoxynuclotides. m	formation. salva for purines a -nyhan syndror echanism of act	age and me.
6.0 Books for	Polyamine I Biosynthes Key words	sis of Cofactors: Biosynthesis And Th is– spermine and sp : Metabolism se content involve	neir Metabolic Role permidine	5	A, 6hours
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication
1.	Plant Physiology	Kochhar	Cambridge India	1	2016
	~ ~	ł	h		1

S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication
1.	Plant Physiology	Kochhar	Cambridge India	1	2016
2.	Plant Physiology	Malik C.P	Kalyani Publishers	1	2014
3.	Textbook of Biochemistry	DrKondreddy Rambabu	Aitbs Publishers	1	2013

Additional books for reference:

S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication
1.	A Textbook of Plant Physiology, Biochemistry and Biotechnology	S K Verma& Mohit Verma	S Chand publishers	4	1995
2.	Lehninger Principles of Biochemistry	David L. Nelson and Michael M. Cox	W.H. Freeman & company	4	2004
3.	Plant Physiology and Biochemistry	H. S. Srivastava &N. Shankar	Rastogi Publications	1	2005

Course Title	(GENETIC ENGINEERING AND GENE EXPRESSION								
<u>О</u>	II and C		Total	48	Ho	urs/W	/eek	03	Credits	03
Course Type	Hard Core- Theory		Hours							
				C	1+C2	2 = 15-	+15	3	0 Marks	100
Course Code	C0220	Evaluation	External	Durat	tion	C3	03Hr	s 7	0 Marks	100

	COURSE OBJECTIVES (COs)				
CO No.	Course Objectives				
CO-1	Understand the principles of the techniques of Gene transfer methods.				
CO-2	Analyze the methods of screening for Tissue culture.				
CO-3	Evaluate the various techniques used in In vitro fertilization and embryo transfer.				
CO-4	Analyze and evaluate the different applications of Bioprocess Technology.				

CLO No.	MAPPING CLO'S WITH PSO's AND CD Course Learning Outcomes	PSOs	CD's
	On completion of the course the student will learn to	Addressed	
CLO-1	understand the concept of recombinant DNA technology or genetic engineering	PSO-2	Understand
CLO-2	Understand the Plant Tissue Culture and Transgenic plant technology	PSO-3	Apply
CLO-3	Explain the general principles and applications of Bioprocess Technology	PSO-1	Analyse
CLO-4	explain the concept and applications of In vitro fertilization and embryo transfer methods	PSO-1	Understand
CLO-5	Provide examples of current applications of biotechnology	PSO-4	Remember

Modules

COURSE CONTENTS

Duration

1.0 Genetic Engineering: Extraction and purification of nucleic acids (DNA and RNA) from biological sources. Definition, aims **6hours** and objectives of recombinant DNA technology, restrictionmodification systems, restriction enzymes; type I, II and III, specificity, sticky ends and blunt ends, isoschizomers. Gene cloning; genomic cloning, shot gun cloning, cDNA cloning. Vectors: Plasmids, phage, cosmids and phagemid. Yeast cloning vectors, plant vectors, bacterial artificial chromosome, SV40, shuttle vectors, construction of expression vectors. Key words: methods, Sites-ORI, genes, significance, Vectors 2.0 Ligation: Blunt end and sticky end ligation, use of linkers and adopters, homo polymer tailing, colony hybridization, plaque hybridization. Transformation: Micro injection, electroporation, lipofection, **6hours** calcium phosphate method, protoplast fusion/somatic cell hybridization and biolistic methods. Transgenic plants and animals, gene knock out Key words: identification, ligation, transformation, gene

knock out

3.0	Techniques : chromosome walking, PCR; analysis of products, nested PCR, applications of PCR in cloning, agriculture and medicine. RT-PCR technique and applications. Real time PCR for quantification. Identifying the right clone: Direct screening; insertional inactivation of marker gene, visual screening, and plaque phenotype. Indirect screening; immunological techniques, hybrid arrest translation, hybrid select translation. Screening using probes; construction of gene probes, hybridization and labeling	6hours
	Key words: Quantification, identification	
4.0	Mapping in Prokaryotes and Viruses: Bacterial transformation and transduction, conjugation; F+ plasmids, Hfr cells, time of entry mapping. Arrangement of genes in phage chromosome, plaque formation and lytic cycle. Fine structure of rII locus of T4. Lysogeny and lambda phage.	6hours
5.0	 Key words:lysis, lysogeny, phages, genes Blotting techniques: Dot blot, Southern, Northern, Western blot, DNA foot print assay, DNA finger print assay, gel retardation assay, nuclease protection assay. RFLP, RAPD Applications: Gene therapy, applications in agriculture medicine, industry. GM foods, terminator gene, negative impact of genetic engineering. Key words: Identification of clones, Golden rice, edible vaccines 	6hours
6.0	Regulation of gene expression in prokaryotes: Operon concept-Lac operon, structure and regulation Dual functions of the repressor in arabinose operon , gal operon- role of two operators, tryptophan operon- Transcriptional control by attenuation in tryptophan operon. Riboswitches- Role of riboswitches, CRISPR-CAS	6hours
7.0	<i>Key words: operons, gene editing</i> Regulation of Eukaryotic gene expression - Regulation at the level of genome -nucleosome structure, Chromatin remodelling, SWI/SNF complex, Chromatin immunoprecipitation (ChIP) analysis,Role of histone modification, Histone code Hypothesis, Transcription factors- NFkB, Si RNA, mi RNA, RNA stability, Regulation of GCN-4	6hours
	Kou words: DNA tupos gono regulation	

Key words: RNA types, gene regulation Note: Course content involves 100% Theory

Sl.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication
1.	Introduction to Genetic Engineering	Desmond S. T. Nicholl	Cambridge University Press	3	2008
2.	Genetic Engineering Handbook	David Rhodes	Syrawood Publishing House	1	2017
3.	Principles of Biotechnology and Genetic Engineering	A.J. Nair	Laxmi Publications	2	2009

S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication
1.	Principles of Gene Manipulation and Genomics	Sandy B. Primrose, Richard Twyman	Wiley-Blackwell	7	2006
2.	Genetic Engineering	Smita Rastogi, Neelam Pathak	Oxford	1	2009
3.	Laboratory Manual for Genetic Engineering	Vennison& S John	Prentice Hall India Learning Private Limited	1	2009

SECOND YEAR-III SEMESTER

Course Title	IMMUNOLOGY									
Course Type	Hard Core-Theory		Total	48	Цо	uro /V	Voolz	03	Credits	03
Course Type	naiu	core-meory	Hours	48 Hours/Week		03	Creatts	03		
			Internal		C1+C2 = 15+15		15	30 Marks		
Course Code	C0230	Evaluation	External	Dura	tion	C3	03I	Irs	70 Marks	100

	COURSE OBJECTIVES (COs)				
CO No.	Course Objectives				
CO-1	Understand and apply the types of immunity and lymphoid organs and lymphocytes				
CO-2	Understand Immunity and Complement System				
CO-3	Understand and apply the various Immunological Techniques in daily life style				
CO-4	Understand the Transplantation and Tumour Immunology and apply the mechanism of autoimmunity				

MAPPING CLO'S WITH PSO's AND CD's					
CLO	Course Learning Outcomes	PSOs	CD's		
No.	On completion of the course the student will	Addressed			
	learn to				
CLO-1	State the role of the immune system in the human body	PSO-2	Understand		
CLO-2	Describe the functions of Immunity and Complement System	PSO-3	Apply		
CLO-3	Describe Immunological techniques	PSO-1	Analyse		
CLO-4	Define the gene organization and explain their	PSO-1	Understand		

	functions		
CLO-5	Explain Autoimmune and Immunodeficiency Disorders	PSO-4	Remember
	and explain their causes		

Modules	COURSE CONTENTS	Duration
1.0	Introduction: Historical Development And Milestones In Immunology, Antigenicity, Immunogenicity, Innate And Acquired Immunity, Primary And Secondary Lymphoid Organs, Self And Non Self Discrimination, Antigens And Antibodies, Haptens, Determinants, Epitopes And Paratopes, Carbohydrates, Proteins, Nucleic Acids and Cells as Antigens, Valency of Antigen, Epitope Analysis, Classes And Subclasses of Immunogloblins, Structure of Immunoglobulins, Hyper Variable Region- Isotypic, Allotypic & Idiotypic Variation	10hours
	Keywords: Epitope, Valency, Hyper Variable Region	
2.0	Cellular Basis of Immunity : Primary And Secondary Immune Response, Reticuloendothelial System ,T, B And Accessory Cells, Development of T And B Cells, Sub Sets of T And B Cells : T- Helper Cells, T-Killer Cells, T-Suppressor Cells, T And B Cell Receptors, Antigen Processing and Presentation, T and B Interaction, Cytokines and Co-Stimulatory Molecules, Lymphokines, Interleukins, Structure And Function of Il-La, Il-2, Tnfa, Suppression of Immune Response, Immunoglobulin Genes, Generation of Immunoglobulin Diversity, Gene Rearrangement and Other Mechanisms, Clonal Selection theory of Burnet <i>Keywords: Selection theory, Antigen Processing</i>	10hours
3.0	 Non-specific defenses in man: Barriers to infection : skin, mucous membranes, Inflammation, Complement hyper sensitivity reactions (Type I, II, III and IV) , Defensins, Toll-like receptors, DAMP , PAMP , Pattern recognition MHC: MHC gene and its polymorphism , Role of MHC in immune response and transplantation Transplantation: Autograft, Isograft, Allograft , Xenograft , Graft rejection : graft vs. host reaction Keywords: Transplantation, Barriers to infection 	10hours
4.0	Tumour immunology: Tumour associated antigens, Factors favoring tumour growth, Immune surveillance ,Tumour necrosis factor- α and β . Disorders of immunity: Immunological tolerance, auto immune disorders, AIDS, SCID <i>Keywords: Tumour associated antigens, Immunological tolerance</i>	10hours
5.0	Vaccines: Adjuvants, vaccines and their preparations, Polyclonal and monoclonal antibodies, hybridoma technique In-vitro antigen-antibody reaction: Precipitation, Agglutination , Complement fixation, Immunodiffusion , Immuno electrophoresis, Defense system in lower organisms <i>Keywords: Vaccines, hybridoma technique, Defense system</i> Note: Course content involves 100% Theory	8hours

S1. No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication
1.	Essentials of Immunology	Janis Kuby	Freeman, W. H. & Company	3	1997
2.	Monoclonal Antibodies – Principles and Practice	J. W. Goding	Academic Press	3	1996
3.	Immunology	Roitt Ivann, Jonathan Brastoff, David Male	Mosby-Year Book	1	1993

Addi	Additional books for reference:								
S1. No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication				
1.	Roitt's Essential Immunology	Peter J. Delves , Seamus J. Martin Dennis R. Burton Ivan M. Roitt	Wiley-Blackwell	12	2011				
2.	A Textbook of Immunology	Latha P.Madhavee	S Chand & Company	1	2012				
3.	Immunology	Dulsy Fatima, N Arumugam	Saras Publication	1	2014				

SECOND YEAR - SEMESTER - III

Course Title	NITROGEN METABOLISM, IMMUNOLOGY AND GENE EXPRESSION									
Course Type	e Hard Core-Practical		Total	48	Hours/Week 06		06	Credits	03	
Course Type			Hours							
Course Code			Internal		C1+C	2 = 15+	15		30 Marks	100
Course Code	CP210	Evaluation	External	Dur	ration	C3	03	Hrs	70 Marks	100

	COURSE OBJECTIVES (COs)							
CO No.	No. Course Objectives							
CO-1	understand and apply the knowledge of the theory a techniques like genetic engineering and immunology	understand and apply the knowledge of the theory and practice of various clinical techniques like genetic engineering and immunology						
CO-2	Identify and analyze the staining techniques							
CO-3	Understand principles, theory and calculations of each experiment							
CO-4	Perform quantitative and qualitative analysis of known standards as well as unknown samples develop problem-solving skills and to nurture professional attitudes							
CO-5	Understand the applicability of the biochemical method	ods to realistic	situations.					
	MAPPING CLO'S WITH PSO's AND C	D's						
CLO	Course Learning Outcomes	PSOs	CD's					
No.	On completion of the course the student will	Addressed						
	learn to							
CLO-1	Gain technical experience and handle adjustable micro pipettes in a reproducible manner	PSO- 1	Understand					

	CLO-2	Plan experiments, write protocols	PSO-2	Remember	
	CLO-3	Perform logical reasoning and criticizing data	PSO -2	Understand	
	CLO-4	Demonstrate the use of advance microscope.	PSO -3	Remember	
	CLO-5	Understand and interpretation of test results	PSO- 4	Analyse	
	Modules	COURSE CONTENTS		Duratior	1
	1.0	Nitrogen Metabolism			
	1.1	Estimation of ammonia		3hours	
	1.2	3hours			
	1.3	3hours			
	1.4	3hours			
	1.5	3hours			
-	2.0	Genetic Engineering			
Γ		COURSE OBJECTIVES (COs)			
1	2.1	Induction of Beta galactosidase in E.coli		3hours	
	3.0	Immunology			
	3.1	Immunodiffusion		3hours	
				Silouis	
	3.2	Purification of IgY		3hours	
	3.2 3.3				
÷		Purification of IgY	s and free	3hours	
	3.3	Purification of IgY Demonstration of ELISA Assay of superoxide, Hydrogen peroxide, free radical	s and free	3hours 3hours	
	3.3 3.4	Purification of IgY Demonstration of ELISA Assay of superoxide, Hydrogen peroxide, free radical radical scavenging	s and free	3hours 3hours 3hours	
	3.3 3.4 3.5	Purification of IgY Demonstration of ELISA Assay of superoxide, Hydrogen peroxide, free radical radical scavenging Macrophage phagocytosis	s and free	3hours 3hours 3hours 3hours	

Note: Course content involves 100% Practicals

Books	Books for reference:								
S1.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication				
1.	Varley's Practical Clinical Biochemistry	Alan H .Gowenhock	CBS publishers.	6	2014				
2.	Text book of Medical laboratory technology	Praful. B. Godkar	Bhalani Publishing house	3, Volume I and II,	2014				
3.	Biochemical Methods	Sadasivam, S. and Manickam, A	New Age International (P) Ltd	3	2010				

Additi	Additional books for reference:									
S1.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication					
1.	Medical Laboratory Technology	Kanai L. Mukerjee	Tata McGraw Hill Education	2	2011					

CO No.	Course Objectives
	Remember the historical background for Clinical Biochemistry and understand the basic elements of core biochemistry and specialized test in carbohydrates
	Analyze the lipid, protein and nucleic acid Metabolism abnormalities.
CO-3	Understand and identify the main test functions
CO-4	Understand the renal function test in clinical biochemistry.
	Evaluate the scientific explanations cancer and evaluate the role of biomarkers in disease diagnosis.

SECOND YEAR-III SEMESTER

Course Title		CLINICAL BIOCHEMISTRY									
Course Type	Soft Co	ore-Theory	Total Hours	48	48 Hours/Week 03		Hours/Week		03	Credits	03
Course Code		Evaluation	Internal		C1+C2 = 15+15			30 Marks	100		
			External	Dura	ation	C3	031	Hrs	70 Marks		

	MAPPING CLO'S WITH PSO's AND CD's								
CLO	Course Learning Outcomes	PSOs	CD's						
No.	On completion of the course the student will	Addressed							
	learn to								
CLO-1	Discuss the biochemistry and pathophysiology associated with tests performed in a clinical biochemistry laboratory		Understand						
CLO-2	Compare and contrast the basic differences between carbohydrate, lipid and protein metabolism abnormalities.		Remember						
CLO-3	Describe and identify the main characteristics of diagnosis, screening, and prognosis of disease.	PSO- 2	Understand						
CLO-4	Critically evaluate the role of clinical biochemistry in diagnosis, monitoring and treatment.	PSO -3	Remember						
CLO-5	Applications of biochemistry on health, medical diagnostics and pharmacy.	PSO -4	Apply						

Modules	COURSE CONTENTS	Duration
1.0	Basic Concepts: Health and Disease, Normal and pathological	Duration
	changes affecting cells in the body, cell death and the physiological causes, physical, chemical, biological agents and	
	nutritional deficiency	4hours
	Blood: Cells, Functions of Plasma Proteins	
1.1	Keywords: cell death, Plasma Proteins Disorders of Hemoglobin: Thalassemia, Sickle Cell Anemia,	
1.1	Anemias: Microcytic, Normocytic and Macrocytic.	
	Diagnostic Enzymology: Mechanisms of Elevated Enzyme	4hours
	Activities, Clinically Important Enzymes and Isoezyme Changes- Alkaline Phosphatase, Creatine Kinase, LDH, AST, ALT	
	Keywords: Anemias, Isoezymes	
2.0	Endocrinology: laboratory diagnosis to assess the health ,	
	function & disorders of : pituitary, adrenals & thyroid gland: Graves' disease, Hashimoto disease, Addison's disease	
	hypo and hyper secretion of hormones : Acromegaly, gigantism	
	Laboratory diagnosis to assess the health , function &	8hours
	disorders of Liver: Biochemical indices of hepatobiliary diseases, bile pigments: formation of Bilirubin, urobilinogen, bile acids.	onours
	disorders: jaundice : pre-hepatic, hepatic and post hepatic,	
	diagnosis of liver function tests, diseases : hepatitis , cholestasis , cirshosis, fatty liver, gallstones	
	Keywords: laboratory diagnosis of endocrine and liver health	
3.0	Laboratory diagnosis to assess the health , function &	
	disorders of Kidney: Creatine Clearance, Renal Calculi , Uremia Laboratory Investigation of Kidney Disorders	
	Gastrointestinal Disorders: Fractional Gastric Analysis, Hypo	8hours
	And Hyper Acidity, Gastric Ulcers, Malabsorption Syndrome, Steatorrhea, Diarrhea	
	Keywords: Kidney Disorders, Gastric Ulcers	
4.0	Disorders of amino acid, lipid, nucleic acid metabolism :	
	Phenylketoneurea, Alkaptonuria, Lysch-Nyhan, Gout, Diagnosis	
	of Metabolic Disorders : Amniocentesis Disorders of Carbohydrate Metabolism: Diabetes Mellitus,	
	Classification, Etiology, Management, Laboratory Investigations,	8hours
	GTT, HbA1c, Diabetic Complications And Advanced Glycation	Shours
	End Products	
	In Born Errors of Carbohydrate Metabolism: Pentosuria,	
	Galactosemia, Lactose Intolerance, Glycogen Storage Diseases <i>Keywords: In Born Errors of Metabolism</i>	
5.0	Disorders of Lipid Metabolism: Hyper Lipoprotenemia And	
	Types of Modification in Lipoproteins, Taysach's, Niemen- Pick	
	Disease, Fabry's Disease	
	Cardiovascular Disorders: Lipoprotenemia's , HDL And Reverse	8hours
	Cholesterol Transport, Major Cardio Vascular System,	onours
	Atherosclerosis, Oxidation Hypothesis, Response to Injury Hypothesis, Inflammation as a cause , Risk Factors And	
	Pathogenesis, Diagnosis And Prognosis, ECG	
	Keywords: Lipoprotenemia's, Oxidation Hypothesis	
6.0	Cancer: Etiology, Diagnosis, Treatment and Prognosis,	
	Carcinogens, Oncogens, and Mechanism of oncogenesis	8hours
	Biochemistry of Ageing: Cellular Senescence, Cystic Fibrosis, and Mechanism of Detoxification of Xenobiotics.	
	Keywords: Cancer, Cellular Senescence	
	Course content involves 100% Theory	
	-	

S1.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication
1.	Clinical Biochemistry	Maheshwai Nanda	Jaypee Brothers Medical Publishers	2	2000
2.	Practical Clinical Biochemistry	Harold Varley	CBS Publishers	4	2005
3.	Handbook of Clinical Biochemistry	R. Swaminathan	World Scientific Publishing Co.,	2	2011

Sl.No	Title of the book	Name of the Author	Name of the Publisher	Edition	Year of Publication
1.	Manipal Manual of Clinical Biochemistry	Nayak Shivananda	Jaypee Brothers Medical Publishers;	4	2013
2.	Lecture Notes: Clinical Biochemistry	Simon W. Walker ,Geoffrey J. Beckett Peter Rae , Ashby	Wiley- Blackwell;	9	2013

SECOND YEAR - SEMESTER - III

			SECO	ND IEAR - S	ENTES	ICF	< – 111					
Course T	ìtle			Genet	ics an	d Ev	voluti	ion				
Course T	ype	Soft Co	ore- Theory	Total Hours		Hours/We		Wee	Wee 03		3 Credits	
Course C	ode			Internal	C1	$+C^2$	2 = 15	5+15		30 M	arks	
			Evaluatio	External	Dura	tio	C3	03F	Ir	70 M	arks	100
			n		n			S				
			COI	URSE OBJEC	TIVE	s (C	Os)					
CO No.	Cou	ırse Obj										
CO-1	Unc	nderstand basic concepts of genetics, helps to develop their analytical,										
		uantitative and problem- solving skills from classical to molecular genetics										
CO-2	Appreciate the concept in evolution of an organisms											
			Mappin	ng of CLOs w	ith PS	SOs (&CDI	ĴS				
CLOs No	•	Со	urse Learni	ng Outcom	es(CLC	Ds)			PSO	s	C	LDs
		On com		he course th earn to	e stud	lent	will	Ac	ddres	ssed		
CLO-1	Uı	nderstar	nd of the che	mical basis o	of here	dity			PSO	-1	Unde	rstand
CLO-2 Understand the genetic methodology and how quantification of heritable traits in families and populations provides insight into cellular and molecular mechanisms.					1	PSO	-4	Appli	cation			
CLO-3		nderstar olution	nding the rol	e of genetic r	mechanisms in			PSO-4		Rem	Remember	
CLO-4 Understand the species concepts and human history					PSO	-2	Unde	rstand				

COURSE CONTENTS

Modules 1.0 Basic Principles Of Mendelism: Laws Of Inheritance. Dominance, Co-dominance, Epistasis, (Coomb Shape In 4 hours Chickens) Pleiotropism. Cytoplasmic Inheritances (Male Sterility In Plants, Shell Coiling). Keywords: Mendelian principles, segregation, inheritance 2.0 Gene Linkage And Chromosome: Linkage And Recombination Of Genes In A Chromosome. Crossing Over Gene Mapping With Three Point Test Cross, Mapping By Tetrad Analysis. X-Linked Inheritance. Polygenic Inheritance, Mitochondrial Inheritance, Y-Chromosome Inheritance. Map Unit. Organization Of Genes In Chromosomes: C Value Paradox, Single Copy Gene, Gene Families, Tandemly Repeating Genes, 10 hours Pseudo Genes. Chromosome Number: Ploidy, Karvotyping, Sex Chromosome And Dosage Compensation. Mobile Genetic Elements. Chromosomal Basis Of Human Diseases: Extra Or Missing Chromosome, Abnormality In Chromosome Structure; Deletion, Duplication, Inversion, Translocation Keywords: Genes, aberrations, inheritance, recombination, jumping genes 3.0 **Population Genetics:** Populations, Gene Pool, Gene Frequency; Hardy-Weinberg Law; Concepts And Rate Of Change In Gene 5 hours Frequency Through Natural Selection, Migration And Random Genetic Drift; Adaptive Radiation And Modifications; Isolating Mechanisms; Speciation; Allopatry And Sympatry; Convergent Evolution; Sexual Selection; Co-Evolution Of Predator-Prey, Pollinating Insects And Flowering Plants. Of Molecular Genetics: Mutations; Nature Mutations, Spontaneous And Induced Mutation, Conditional, Lethal (Temperature Sensitive) Mutation. Biochemical Basis Of 5 hours Mutation, Substitution Mutation, Mutation. Point Base Missense, Nonsense And Silent Mutation. Mutation Rates. Chemical Mutagens, Radiation Induced Mutation, Reverse Mutations And Suppressor Mutations - Intergenic And Intragenic Suppression, Reversion As A Means Of Detecting Mutagens - Ames Test Repair Mechanism: Reciprocal Recombination, Site Specific 4 hours Recombination, E.Coli Rec System. Holliday Model Of Recombination. Keywords: Evolutionary aspects, mutation types, mutagens, 4.0 Emergence Of Evolutionary Thoughts: Lamarck; Darwin-Concepts Of Variation, Adaptation, Struggle, Fitness And Natural Selection. Mendelism; Spontaneity Of Mutations; The Evolutionary Synthesis. Basis For Darwin's Theory; Confounding Observations From Embryology, Comparative Anatomy And Biochemistry, Haeckel's Drawings Of Embryos To Fit The Theory

10 hours

Of Evolution. Origin Of Cells And Unicellular Evolution: Origin Of Basic Biological Molecules; Abiotic Synthesis Of Organic Monomers And Polymers; Concept Of Oparin And Haldane; Experiment Of Urey And Miller (1953); The First Cell; Evolution Of Prokaryotes; Origin Of Eukaryotic Cells; Evolution Of Unicellular Eukaryotes; Anaerobic Metabolism, Photosynthesis And Aerobic Metabolism Keywords: Theories, biotic, abiotic, origin of cell

Duration

5.0 Paleontology And Evolutionary History: Big Bang Theory, Age Of Stars, Confounding Data From The Hubbel Space Telescope, Expanding Universe, The Evolutionary Time Scale; Eras, Periods And Epoch; Major Events In The Evolutionary Time Scale; Punctuated Equilibrium And Phylectic Gradualism, Stages In Primate Evolution Including Homo. Dating Of Fossils, Different Methods, Current Controversies Concerning Theory Of Evolution. Controversies Concerning Evolution Of Prokaryotes Vs. Eukaryotes, Birds Vs. Dinosaurs, Age Of Humans, Asexual Vs. Sexual Reproduction, Cold Blooded Vs. Warm Blooded; Living Fossils, Evolution Of Birds And Dinosaurs, Hoaxes And Falsification Of Data (Javaman).

Keywords: Eras, periods, cosmological models, fossils, reproductions

6.0 Molecular Evolution: Concept Of Neutral Theory Of Evolution. Molecular Divergence And Molecular Clock**s**, Molecular Tools In Phylogeny, Classification And Identification; Protein And Nucleotide Sequence Analysis; Origin Of New Genes And Proteins; Gene Duplication And Divergence

4 hours

Keywords: Biological clocks, genetic contents Note: Course content involves 100% Theory

S1.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication
1.	Principles of Genetics	J. Gardner	John Wiley and Sons	8	2003
2.	Basic Genetics	G. S. Miglani	Narosa Publishing House	1	2000
3.	Cell Biology, Genetics, Molecular Biology, Evolution & Ecology	Verma P.S. Agarwal V.K	S Chand publication	5	2006
4.	Evolution	Mark Ridley	Blackwell	3	2003

			Year of			
Sl.No	Title of the book	Name of the author	Name of the publisher	Edition	publicati	
	Biotechnology –2 (Cell	Rajeshwari S.	New Age			
1.	Biology, Genetics,	Setty and V.	International	1	2018	
	Microbiology)	Sreekrishna	Publishers			
2.	Genetics Essentials: Concepts and	Benjamin.A.	W. H. Freeman	3	2015	
	Connections	Pierce			2010	
	Genetics: Analysis of	Daniel L. Hartl ,				
3.	Genes and Genomes	Maryellen Ruvolo	Laxmi Publications	8 8	2011	

SECOND YEAR - SEMESTER - III

Course T	ìtle		Mi	crobiology	& Mi	crobia	al tec	hnolo	ogy			
Course T		Hard Co	ore- Theory	Total Hours	48		ırs/W		ek 03		Credits	03
			5 1	Internal	(C1+C2	2 = 15	+15		30	Marks	100
Course Code		C0330	Evaluation	External	Dura	ation	C3	03E	Irs	70	Marks	100
			COUR	SE OBJEC	TIVE	s (co	s)					
CO No.	Cou	ırse Obje	ctives									
CO-1Impart knowledge about industrially useful microorganisms and use of fermenter for the production of various primary and secondary metabolitesCO-2To explain the use and importance of biofertilizers												
CO-2	10 6	explain th		-								
Mapping of CLOs with PSOs &CDLs												
CLOs No. Course Learning Outcomes(CLOs) On completion of the course the student will learn to				vill	P Add	SOs ress	ed	CLI	Ds			
CLO-1			oasic technic hysiology.	ques in m	icrobi	ology	and	PS	SO-1		Unders	stand
CLO-2	Portray the production methods for industrially PSO-4 Applica important products of microbial origin such as antibiotics, vaccines, proteins, primary and secondary metabolites, as well as food and dairy						ation					
products.CLO-3Have knowledge on application in varied fields of environment bioremediation, bioenergy, biof water treatment.			onmental r	nicrob	iology	like	PS	80-2		Remer	nber	

odules	COURSE CONTENTS	Duration
1.0	Microbiology Industrial concepts	
	Basics: Isolation and improvement of industrially important	
	strains, design of fermentation media, basic design of a fermentor, inoculum development, batch, fed batch and continuous mode of	
	fermentations	8 hours
	Sterilization: Thermal death kinetics, sterilization of medium,	
	air and fermentors, concepts of process variables and scale up	
	Keywords: inoculation methods, types,	
2.0	Bioprocess: Basic principles in bioprocess, advantages of	
	bioprocess over chemical process, isolation and improvement of	0.1
	industrially important strains, design of fermentation media	8 hours
	Bioreactors : Microbes, plant cells, animal cells <i>Keywords: Microbial strains, large scale production</i>	
3.0	Microbial production & Downstream processing	
	Vitamin (B12), enzymes (amylase), organic acid (citric acid), amino	
	acid (lysine), solvents (acetone, butanol), antibiotics (penicillin),	8 hours
	single cell proteins, ethanol-wine & beer	
	Keywords: Biomolecule production	
.0	Design of fermenter: Criteria for ideal fermenter, aeration,	
	agitation, valves, baffles, heat exchanges	
	Types of fermenters: Waidhof-type fermenter, tower fermenter, cylindroconical vessels, air-lift fermenter, deep-jet fermenter,	
	cyclone column, packed tower, rotating disc fermenter,	
	photobioreactors, stability of microbial reactors, kinetics of	
	fermentation processes	16 hours
	Types of fermentation processes: Submerged fermentation,	
	surface or solid substrate fermentation, batch fermentation,	
	continuous fermentation	
	Fermentation economics: Biofuels, bioconservation, gasohol,	
	biogas, waste utilization to generate biofuels <i>Keywords: Fermentation process, types of fermenters</i>	
5.0	Downstream processing of biological molecules	
	Separation of cells: Flocculation, foam separation, filtration,	
	centrifugation (basket and bowl centrifugation), cell lysis methods	
	- physical and chemical methods	
	Large scale separation techniques: Distillation, solvent	14 hours
	extraction, liquid-liquid extraction, chromatographic techniques,	
	membrane filtration, ultra filtration, reverse osmosis,	
	crystallization, spray drying, drum drying, freeze drying, whole broth processing	
	Keywords: Biochemical techniques	
6.0	Biosensors : Construction and application	
	Biofertilizers: Rhizobium, Azotobacter, Azospirillum,	C b -
	Cyanobacteria, Mycorrhizas, phosphate solubilizers, Frankia	6 hours
	Keywords: Production, Nitrogen fixers	
	Note: Course content involves 100% Theory	

Bo	Books for Reference:										
S 1.	.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publicati					
1.		Prescott's Microbiology	Joanne Willey , Linda Sherwood & Chris Woolverton	McGraw Hill Education	8	2010					

2	La	Benson's Microbiological Applications: Iboratory Manual in eneral Microbiology	Alfred Brown	McGraw-Hill	12	2011
3	. N	Aicrobial Processes and Products (Methods in Biotechnology)	José-Luis Barredo	Humana Press	2	2005
4		Microbial Biotechnology: Fundamentals of pplied Microbiology	Alexander N. Glazer , Hiroshi Nikaido	Cambridge University Press	2	2007

S1.No	Title of the book	Name of the author	Name of the publisher	Editi on	Year of publicati
1.	Ananthanarayan and Paniker's Textbook of Microbiology	Reba Kanungo	Universities Press	10	2017
2.	Essentials of Microbiology	Sinha L. Bilgrani	CBS publisher	1	2005
3.	Microbial Biotechnology: Principles and Applications	Yuan Kun Lee)	World Scientific Publishing Company	3	2013

SECOND YEAR-IV SEMESTER

Course Title		INDUSTRY INTERNSHIP/PROJECT WORK									
Course Trees	burse Type Hard Core-Theory		Total	48	Hours/Week		Veek 03		Credits	13	
Course Type			Hours								
	55010			C1+C2 = 15+15				30 Marks	100		
Course Code	DP210	Evaluation	External	Duration		C3	03I	Irs	70 Marks	100	

	COURSE OBJECTIVES (COs)
CO No.	Course Objectives
CO-1	understand & acquire the ability to make links across different areas of knowledge
CO-2	generate ,develop and evaluate ideas and information so as to apply these skills to their projected task or work plan

MAPPING CLO'S WITH PSO's AND CD's							
CLO No.	5		CD's				
	learn to						
CLO-1	Students will acquire the ability to make links across different areas of knowledge and to generate,	PSO- 1	Understand				

CLO-2	develop and evaluate ideas and information so as to apply these skills to their projected task or work plan	PSO- 2	Remember
Modules	COURSE CONTENTS		Duration
1.0	A student has to choose either Industry Internship work. The duration is 12-15 weeks. At the en- internship/Project, the student will prepare a report a it to the Department. The report will be evaluated for and a Viva Voce examination will be conducted for 40 evaluation of the performance of the candidate eit internship or project work (in house or external) by the supervisor shall also be obtained to assist the evaluation The Supervisor's evaluation will be obtained in a format to enable the department to have a c evaluation Keywords: Project work, viva voce	nd of the and submit r 30 Marks) marks An her during e respective on process. structured	26hours

SECOND YEAR-IV SEMESTER

Course Title		BIOSTATISTICS								
Course Type	Soft C	ore-Theory	Total Hours	30	Ηοι	Hours/Week		Week 02 0		02
0	C 1 Doolo Erstrad		Internal	C	C1+C2 = 15+15			30 Marks	100	
Course Code	D0310	Evaluation	External	Dura	ation	C3	03H	rs 7	70 Marks	100

	COURSE OBJECTIVES (COs)						
CO No.	Course Objectives						
CO-1	To understand fundamental concepts and definitions of biostatistics						
CO-2	Application of statistical principles for problemsolving in medicine, public health or biology						

	MAPPING CLO'S WITH PSO's AND CD's							
CLO	Course Learning Outcomes	PSOs	CD's					
No.	On completion of the course the student will	Addressed						
	learn to							
CLO-1	Select, use and interpret results of descriptive statistical methodseffectively	PSO -1	Remember					
CLO-2	Demonstrate an understanding of the central concepts of modern statistical theory and their probabilistic foundation;	PSO -2	Understand					
CLO-3	Select, use, and interpret results of, the principal methods of statistical inference and design	PSO- 2	Remember					
CLO-4	Understand thescientific methods for data interpretation	PSO -3	Remember					

Modules	COURSE CONTENTS	Duration
1.0	Population, Sample , Sampling Techniques- Random Sample, Mean, Median, Mode, Range, Variance , Coefficient Of Variation, Frequency, Standard Deviation , Standard Error. Representation Of Statistical Data Line Graph- Histogram Bar, Diagram Pie, Chart Scatter Diagram. <i>keywords: graphs, sampling types</i>	12 hours
2.0	Collection Of Data- Relevance Of Sample Size, Sources, Methods- Questionnaires, Records, Archives, Scaling-Likert And Gutman, Validation And Standardization Of The Methods, Modification And Experimental Design <i>key words: Data, Designing, Collection</i>	12 hours
3.0	Design Of Experiments -Factorial Experiments, Stratification And Randomization, Interaction Among Factors <i>key words: Designing</i>	10 hours
4.0	Probability- Rules Of Probability, Binomial Distribution, Normal Distribution, Area Under The Curve, Z Value, Choosing Sample Size, Hypothesis Testing, Student's T Test, One Way ANOVA, Correlation And Regression, Non Parametric Statistics, Sign Test,	14hours

Note: Course content involves 60% Theory and 40% problems

keywords: probability, regression, Tests for analysis

Rank Sum Test, Rank Correlation

Books	Books for reference:								
S1.No	author publisher		Edition	Year of publication					
1	Fundamentals of Biostatistics	Khan & Khanum	Ukaaz Publications	1	1994				
2	Applied Statistics in Health Sciences	Rao	Jaypee Brothers Medical Publishers	2	2010				
3	Biostatistics	P Ramakrishnan	Saras Publication	1	2015				

S1.No	Title of the book	Name of the Author	Name of the Publisher	Editio n	Year of Publication
1.	Fundamentals of Statistics	S. C. Gupta	Himalaya Publishing House Pvt. Ltd.	7	2018
2.	Biostatistics a Manual of Statistical Methods for Use in Health, Nutrition and Anthropology	Rao	Jaypee Brothers Medical Publishers	2	2009
3.	Introduction to Biostatistics and Research Methods	Rao S	PHI Learning Pvt. Ltd	5	2012

SECOND YEAR-IV SEMESTER

Course Title		SCIENTIFIC WRITING AND PRESENTATION										
Course Trees	Soft Core-Theory		Total	48	Ηοι	Hours/Week		03	Credits	03		
Course Type			Hours									
	Course Code D0320 Evaluation				Internal		C1+C	2 = 1	5+15		30 Marks	100
Course Code			External	Dura	ation	C3	031	Hrs	70 Marks	100		

	COURSE OBJECTIVES (COs)					
CO No.	Course Objectives					
CO-1	Understand and apply the concept of various representations of data					
CO-2	Understand Techniques involved in defining the problem.					
CO-3	Understand Characteristics and Function of Research					

	MAPPING CLO'S WITH PSO's AND CD's							
CLO	Course Learning Outcomes	PSOs	CD's					
No.	On completion of the course the student will	Addressed						
	learn to							
CLO-1	Select, use and interpret results of descriptive statistical methods effectively	PSO- 1	Understand					
CLO-2	Demonstrate an understanding of the central concepts of modern statistical theory and their probabilistic foundation	PSO- 2	Remember					
CLO-3	Select, use, and interpret results of, the principal methods of statistical inference and design	PSO- 2	Remember					
CLO-4	Understand the Research and scientific methods	PSO- 3	Remember					
CLO-5	Understand the Goals and Criteria for identifying	PSO- 4	Analyse					

Modules	COURSE CONTENTS	Duration
1.0	Reading and comprehension: Sources of literature, Importance of literature review, Reading and comprehension <i>Keywords: literature review</i>	6hours
2.0	The art of writing: Basic principles, Creative writing skills The organization of content: Structure and flow of ideas, Cohesive devices in written texts of various types <i>Keywords: art of writing</i>	6hours
3.0	Structures of writing: Sentences, Paragraphs, Parts of a paragraph, Flow of ideas connection between paragraphs Types: Writing laboratory records, journal articles, textbooks, research reports, reviews, scientific papers, scientific communications, thesis Types of journals, Journal impact factor <i>Keywords: Journals, Articles</i>	14hours
4.0	Oral communication : Types of lectures: Popular, Scientific , Short presentation, Preparation of power point slides, Flow of ideas, Continuity of thought, Simplicity of presentation material Animation Effects, Graphic Representation ,Use of cartoon diagrams, Microsoft Excel, Processing of data and presentation using appropriate diagrams, Bar diagrams , Line graphs , Scatter diagrams, 3D plots and use of standard deviation and error bars <i>Keywords: communication, graphic representation, error bar</i>	14hours

5.0 Each student will have to choose a scientific article and present it *Keywords: Research Articles*

Books for reference:								
Sl.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication			
1.	Research Methodology, Methods and Techniques	C.R. Kothari,	New Age Internati onal Publisher s. New Delhi	2	2001			

8hours

Additional books for reference:

S1.No	Title of the book	Name of the author	Name of the publisher	Edition	Year of publication
1.	Introduction to bioinformatics	Wayne W. Daniel	John Willey and Sons Inc., USA.	9	2006

Blue print of question papers for practical exams from I-IV semesters

	St. Philomena's College (Autonomous), Mysore				
M.Sc Biochemistry					
Time: 4 Hours		Max Marks: 70			
1.	Procedure writing	5 marks			
2.	Major experiment	35 marks			
3.	Minor experiment/ spotters/calculations	20 marks			
4.	Viva	10 marks			

Blue print of question papers from I-IV semesters

		St. Philomena's College (Autonomous), Mysore M.Sc Biochemistry
		M.Sc Biochemistry
		3 Hours
Maz	k Ma	rks: 70
		PART-A
		PARI-A
		Answer any TEN of the following:
		10x2=20
1.	a	
	b	
	с	
	d	
	e	
	f	
	g	
	h	
	i	
	j	
	k	
	1	
		PART-B
		any FIVE questions: 5x10=50
2.	a	
	b	
3.	a	
	b	
.	a	
	b	
	a 1	
	b	
.	a	
,	b	
' .	a b	
	D	
	~ 1	
	a b	