St.Philomena's College (Autonomus), Mysore

PG Department of Mathematics

Question Bank (Revised Curriculum 2020 onwards)

Second Year - Third Semester

Course Title (Paper Title): Elements Of Functional Analysis

Q.P.Code- 87321

Unit	S.No	Question	Marks
1	1	Define a complete metric space with an example.	$2\mathrm{m}$
1	2	Show that \mathbb{R}^n and \mathbb{C}^n are complete metric spaces.	$2\mathrm{m}$
1	3	Define a normed linear space	$2\mathrm{m}$
1	4	Prove that every normed linear space is metric space	$2\mathrm{m}$
1	5	Define a contraction map and a fixed point	$2\mathrm{m}$
1	6	Define first category and second category metric spaces	$2\mathrm{m}$
2	7	Show that $l_n^{p}(\mathbb{R})$ is a complete metric space	$2\mathrm{m}$
2	8	Define a separable space with an example	$2\mathrm{m}$
2	9	Find the dense subspace of $l^p(\mathbb{R})$	$2\mathrm{m}$
2	10	Show that every dense subspace of $l^{\infty}(\mathbb{R})$ is uncountably infinite	$2\mathrm{m}$
3	11	Is Bolzano Weirstrass property is true in general metric space? Justify	y 2m
3	12	Is Cantor's intersection property is true i general metric space? Justif	y 2m
3	13	Show that the boundedness in $\mathbb R$ implies total boundedness	$2\mathrm{m}$

3	14	Define total boundedness of a set with an example	2m
3	15	Define linear operator and bounded linear operator	$2\mathrm{m}$
4	16	Define a poset with an example	2m
4	17	Define Banach space with n example	2m
4	18	Define an open map	$2\mathrm{m}$
4	19	Show that $l_2^{\infty}(\mathbb{R})$ is an Hilbert space	$2\mathrm{m}$
4	20	In a Hilbert space define Orthogonality and Orthogonal Compliment	$2\mathrm{m}$
1	21	Define complete metric space. Give two examples	4m
1	าา	Define isometry with an example. Is every isometry is continuous? Jus-	4m
1	22	tify .	
1	<u> </u>	Define Nowhere Dense set and Everywhere dense subset with an exam-	4m
1	20	ple?	4111
2	24	Define first category and second category metric spaces.	4m
4	25	Prove that $ x + y ^2 - x - y ^2 + i x + iy ^2 - x - iy ^2 = 4 xy $	4m
4	26	In a Hilbert space show that inner product space is continuous.	$6\mathrm{m}$
1	27	Show that every closed subspace of a complete metric space is complete.	$7\mathrm{m}$
1	28	Define a normed linear space .Show that every normed linear space is a	$7\mathrm{m}$
1		complete metric space	
9	29	Prove that a Normed linear space is complete if and only if every abso-	7
Δ		lutely convergent series in X is convergent	(111

3	30	Show that the linear space $B(N, N')$ over \mathbb{F} is a normed linear space with	7m
0	00	respect to $ T = Sup\{ T(x) ; x \le 1 \}$	
4	31	In a Hilbert space show that inner product is continuous.	$7\mathrm{m}$
4	32	If M is a closed linear subspace of a Hilbert Space H then prove that $H = M \oplus M^\perp$	$7\mathrm{m}$
4	33	In a Hilbert Space H , Define orthonormal set and prove Bessel's inequality.	$7\mathrm{m}$
3	34	Define a an inner product space and Normed linear space . If $(H, (., .))$ is an inner product space then prove that it is a Normed linear space	8m
1	35	Show that $B^*((x), d)$ is a complete metric space	10m
1	37	State and prove Metric completion theorem	10m
1	38	State and prove Banach fixed point theorem	10m
1	39	State and prove Baire's Category theorem.	10m
4	40	In a Hilbert space prove the Paralleogram law and Pythogoras theorem	10m
1	41	Prove Picards theorem as a consequence of Banach Fixed Point theorem	10m
2	42	 Show that the following is equialent for the metric space (X, d) a) X is Compact b) X is Sequentially Compact c) X is complete and totally bounded 	10m

		If $T: N \to N'$ is a linear operator from an normed linear space N to a	
		normed linear space N' then show that the following are equivalent	
		a) T is continuous linear operator.	
2	43	b) T is continuous at $x = 0$.	10m
		c) T is bounded linear operator.	
		d) If $S = \{x \in N; x \le 1\}$ is the closed unit sphere in N then $T(S)$ is	
		bounded in N'	
3	44	State and prove Hahn Banach theorem for any Real linear space .	10m
3	45	State and prove Hahn Banach theorem for any Complex linear space .	10m
2	46	State and prove Open mapping theorem by explaining the definitions	10m
3	40	that are needed to prove the theorem.	
0	17	State and prove Closed Graph theorem by explaining the definitions that	10m
3	47	are needed to prove the theorem.	
2	10	State and prove Principle of uniform boundedness by explaining the def-	10m
J	4ð	initions that are needed to prove the result.	

Let H be a Hilbert space such that $S \subset H$ then prove the following results

a) $S \cap S^{\perp} = \{0\}$

49 b)
$$S^{\perp}$$
 is a closed subspace of H.
c) $S_1 \subseteq S_2$ that implies $S_2^{\perp} \subseteq S_1^{\perp}$.
d) $S \subseteq S^{\perp \perp}$

If e_i is an orthonormal set in a Hilbert Space H then prove that the following is equivalent.

a)
$$e_i$$
 is complete.
50
b) $x \perp e_i \implies x = 0$
c) $x \in H \implies x = \sum (x, e_i)e_i$.
d) $x \in H \implies ||x||^2 = \sum ||(x, e_i)||^2$

4

Model Question Paper

St.Philomena's College (Autonomous), Mysuru M.Sc Mathematics Third Semester Examination 2020-21 Subject - Elements of Functional Analysis

Time - 3 Hours

Maximum Marks-70

Section A

Answer the following questions

 $4 \times 1 = 4$

1. (a) Which of the following is not a complete metric space.

i) \mathbb{R}^n ii) (\mathbb{R}) iii) [0,1] iv) [0,1] - {0}

(b) The set of all limit point of the set $S = \left\{ \frac{1}{m} + \frac{1}{n} : m, n \in \mathbb{N} \right\}$ is i) \emptyset ii) $\{0\}$ iii) $\left\{ \frac{1}{m}; m \in \mathbb{N} \right\}$ iv) None of the above

- (c) A complete normed linear space is
 - i) Banach space ii) Hilbert Space
 - iii) Both Banach and Hilbert iv) None of the above
- (d) Orthonormal set S^{\perp} of a Complete Metric Space is
 - i) Banach space ii) Hilbert Space
 - iii) Complete iv) Incomplete

Section B

Answer the following questions

- 2. (a) Define a contraction map and a fixed point.
 - (b) Show that every dense subspace of $l^{\infty}(\mathbb{R})$ is uncountably infinite.
 - (c) Is Bolzano Weirstrass property is true in general metric space? Justify.

Section C

Answer any *three* of the following questions $3 \times 10=30$

- 3. Show that every closed subspace of a complete metric space is complete. Also show that every normed linear space is a complete metric space.
- 4. State and prove Banach fixed point theorem .
- 5. State and prove Baire's Category theorem.
- 6. State and Prove Stone Weirstrass theorem.

Section D

Answer any *three* of the following questions $3 \times 10=30$

- 7. State and prove Hahn Banach theorem for real case.
- 8. State and Prove Closed graph theorem .

 $3 \times 2 = 6$

- 9. Let H be a Hilbert space such that $S \subset H$ then prove the following results
 - a) $S \cap S^{\perp} = \{0\}$
 - b) S^{\perp} is a closed subspace of H.
 - c) $S_1 \subseteq S_2$ that implies $S_2^{\perp} \subseteq S_1^{\perp}$.
 - d) $S \subseteq S^{\perp \perp}$
- 10. If e_i is an orthonormal set in a Hilbert Space H then prove that the following is equivalent.
 - a) e_i is complete.
 - b) $x \perp e_i \implies x = 0$ c) $x \in H \implies x = \sum (x, e_i)e_i$. d) $x \in H \implies ||x||^2 = \sum ||(x, e_i)||^2$

* * * * * * *