St. Philomena's College (Autonomous), Mysore

Question Bank

Programme: M. Sc. Physics III Semester

Course Title: NUCLEAR AND PARTICLE PHYSICS Course Type: Hard Core Q.P Code: 58202

No.	Module	Question	Marks
1	1	Define nuclear spin (I) and parity (π) .	
2	1	Write a short note on electric quadrupole moment of the nucleus.	
3	1	Is it possible to estimate size of the nucleus by scattering of visible light?.	
4	1	In electron scattering experiments, how do you identify electrons scattered from electrons and from nuclei?.	
5	1	Define Bohr magneton and deduce its magnitude.	3
6	1	Why infinite depth potential in shell model is not realistic?.	
7	1	Explain nuclear isomerism with example.	4
8	1	Give the basic assumptions of nuclear shell model.	
9	1	Explain how the ground state spin and parity for a nucleus in ground state is determined using the shell model.	
10	1	Find the most stable isobar of A=25 using Semi empirical mass formula.	
11	1	Prove that nuclear density is independent of its mass.	
12	1	Discuss the role of electric quadrupole moment in predicting the effective shape of the nucleus.	6
12	1		6
13	1	Outline the quantum mechanical formalism to determine nuclear charge distribution. With necessary explanation compare the proton distribution in ${}^{16}O$, ${}^{116}Sn$ and ${}^{197}Au$.	
14 15	1		6 6
10		Obtain the mass distribution from charge distribution and with necessary explanation compare the mass distribution in ${}^{16}O$, ${}^{116}Sn$ and ${}^{197}Au$.	
16	1	If binding energy $BE = 2.225 \ MeV$ and range of interaction $r_0 = 2.1 \ fm$ for deuteron. Assume square well potential and with necessary justification, arrive at the final form of time independent Schrodinger equation.	
17	1	Assume square well potential for deuteron and solve the time independent Schrödinger equation and obtain the solution in the region $r < r_0$ and $r > r_0$.	
18	1	Apply continuity condition on the solution in the region $r < r_0$ and $r > r_0$. Duduce that depth of square well pottential for deuteron is $V_0 = 36 \text{ MeV}$.	
19	1	How magnetic moment arises and how it is related to orbital angular momentum?.	
20	1	How magnetic moment arises and how it is related to orbital angular momentum?. Define magnetic moment due to orbital and spin motion of nucleons. Deduce the magnitude of nuclear magneton.	
21	1	Explain why single particle pottential is different for proton and neutron?, comment on the diffrences using Woods-Saxon pottential.	
22	1	Define Nuclear spin and pairing of nucleons. Why the nuclear spin of even-even nuclei is zero?.	6
23	1	Explain the molecular beam experiment to determine nuclear magnetic moment.	8
24	1	Explain how the mesic X-ray method is used to estimate the nuclear radius parameter.	8
25	1	$\begin{array}{c} \text{Dxprain now the mester X-ray method is used to estimate the nuclear radius parameter.} \\ \text{Obtain the general expression for the Q value of the nuclear reaction} X(x,y)Y. \end{array}$	
26	1	Obtain the general expression for the Q value of the nuclear reactionX(x,y)Y.Analyze the role of spin orbit interaction in obtaining all the magic numbers using the shell model.	
27	1	With necessary details explain the fermi gas model of the nucleus.	
28	1	With necessary details explain the fermi gas model of the nucleus. What is the evidence of shell structure in nuclei? Explain the main assumptions of the nuclear shell model.	
29	1	What are mirror nuclei? Explain how the Coulomb energy difference between mirror.	9
30	1	nuclei can be used to determine the nuclear radius parameter.	9

No.	Module	Question		
31	1	Discuss the electron scattering experiment to measure the nuclear charge radius.		
32	1	Illustrate the molecular beam experiment to determine nuclear magnetic moment.		
33	1	Discuss the nuclear charge and mass distribution and show that nuclear mass distribution can		
		be depicted by Woods-Saxon function.		
34	1	If $\rho = 0.9\rho_0$ and $\rho = 0.1\rho_0$ in Woods-Saxon function, obtain the value of R+a and R-a, where	9	
		R is the mean radius of the nuclei.		
35	1	Obtain the expression for binding energy (BE) in terms of atomic mass and calculate BE of		
		helium nuclei using following data: $M^{at}({}^{4}_{2}He) = 4.0026u, M^{at}({}^{1}_{1}H) = 1.0078u$ and $M_{n} =$		
		1.0086 <i>u</i> .		
36	1	Explain the correction factors of semi empirical formula for binding energy of Nuclei.	9	
37	1	Justify that high energy electrons can be used to determine size of the nucleus. Estimate the	9	
00		order of electron's kinetic energy required.	0	
38	1	In the electron scattering experiment from carbon target, minimum number of electrons scatter	9	
		at $\theta = 51^{\circ}$, show that size of nuclei can be estimated using optical analogy. If kinetic energy of		
20	1	electrons is $420 \ MeV$, estimate the size of carbon nuclei.	0	
39	1	Show that single particle shell model with infinite square well pottential fail to explain all observed magic numbers.	9	
40	1	Show that single particle shell model with 3 dimensional harmonic oscillator pottential fail to	9	
40		explain all observed magic numbers.	9	
41	1	In single particle shell model with 3 dimensional harmonic oscillator pottential, discuss the	9	
71		effect of spin interactions on the energy levels.	5	
42	1	Write the energy level diagram and show that observed magic numbers can be explained by	9	
	-	shell model with spin interactions.	0	
43	1	Compare the energy levels in shell model with 3 dimensional harmonic oscillator pottential and	9	
		Woods-Saxon pottential.		
44	1	What is the parity of even-even nuclei?. Illustrate with a example.		
45	1	Obtain I^{π} for $\frac{61}{28}Ni_{33}$ using shell model. If $I^{\pi} = \frac{3}{2}^{-}$ is observed for $\frac{61}{28}Ni_{33}$, how do you justify		
		the difference?.	9	
46	1	Using shell model obtain I^{π} for ${}^{61}_{28}Ni_{33}$ and compare it with the observed value $I^{\pi} = \frac{3}{2}^{-}$. Show	9	
		that the difference can be accounted by braking the pairs.		
47	1	If $I^{\pi} = \frac{5}{2}^+, \frac{1}{2}^+, \frac{1}{2}^-$ for ground state, first and second exited states, respectively. Show that how	9	
		the observed values can be accounted in shell model.		
48	1	Obtain an expression for the magnetic dipole moment of odd A nuclei on the basis of single	10	
		particle model.		
49	1	Prove that only lower magic numbers can be generated at shell closure using shell model theory	10	
		with infinite square well potential.		
50	1	Explain the stability of isobars on the basis of liquid drop model.		
51	1	Discuss the basic assumption of liquid drop model of nucleus. Explain how this model is used	10	
		to estimate semi empirical mass formula.		
52	2	Define range and stopping power.	3	
53	2	Discuss the role of moderators in nuclear reactors.	3	
54	2	What are reflectors? Give their significance.	3	
EE		What are breaden needen? Eurolein	4	
55	2	What are breeder reactors? Explain with examples.		
56	2	Explain internal and external Bremhstralung radiations.		
57	2	Calculate the energy released during the symmetric fission of ^{236}U .		
58	2	Explain photodisintegration process.	4	
59	2	Discuss the Mössbauer effect. List the necessary conditions for Mössbauer effect to occur.	6	
<u>59</u> 60	2	Discuss the Mossbauer effect. List the necessary conditions for Mossbauer effect to occur. Discuss the Coulomb correction to the momentum distribution of beta particles in allowed beta	6	
00	-	decay.		

No.	Module	Question	Marks
61	2	Explain the classification of beta decay based on Comparative half life values.	
62	2	Discuss the conditions for controlled chain reaction and define the multiplication factor.	
63	2	Write a note on Bremsstrahlung radiation.	
64	2	Describe the important features of beta ray spectrum emitted by radioactive nuclides.	
65	2	Explain how neutrino hypothesis explains the the process of beta decay.	
66	2	Explain the role of neutrino hypothesis in understanding the beta ray spectrum. What is Kurie plot.	
67	2	Define linear and mass attenuation coefficients and obtain an expression for the same.	
68	2	Analyze the role of reflectors and moderators in a nuclear reactor.	
69	2	Derive an expression for the threshold energy of the endoergic nuclear reaction of the form $X(x,y)Y$.	
70	2	Explain the internal conversion process and Auger effect. Obtain an expression for the conversion coefficient.	
71	2	Obtain an expression for the critical volume of a homogeneous spherical reactor using the neutron diffusion equation.	
72	2	Describe how a NaI(Tl) Scintillation detector is used for gamma ray spectroscopy.	
73	2	Outline the Fermi's theory to explain the continuous energy spectrum in beta decay.	
74	2	Obtain the classical formula for energy loss of heavy charged particle through matter, and then introduce relativistic corrections to obtain Bethe- Bloch formula.	
75	3	Define Isospin and give its importance.	3
76	3	Write a note on pair production, with reference to interaction of gamma rays with matter.	3
77	3	Write a short note on quarks.	3
78	3	Explain the need for strangeness quantum number.	3
79	3	Discuss the classification of bosons.	
80	3	Explain Gellmann-Nishijima scheme.	4
81	3	What is $\tau - \theta$ puzzle? Explain how it was resolved.	
82	3	Write the possible spin combinations in Deuteron.	5
83	3	Write the possible combinations of orbital and spin angular momentums of nucleons in Deuteron.	
84	3	Derive the effect of spin interactions on the potential in Deuteron.	5
85	3	Explain the properties of π mesons.	
86	3	Explain the CP Violation in Kaon decay.	
87	3	Explain the CP Violation in Kaon decay. If binding energy $BE = 2.225 \ MeV$ and range of interaction $r_0 = 2.1 \ fm$ for deuteron. Assume square well potential and with necessary justification, arrive at the final form of time independent Schrodinger equation.	
88	3	Assume square well potential for deuteron and solve the time independent Schrodinger equation and obtain the solution in the region $r < r_0$ and $r > r_0$.	
89	3	Apply continuity condition on the solution in the region $r < r_0$ and $r > r_0$. Duduce that depth of square well pottential for deuteron is $V_0 = 36 \ MeV$.	
90	3	Discuss operational definition of differential and total cross-section.	6

No.	Module	Question	Marks
91	3	In n-p scattering, if incoming plane wave function (e^{ikz}) is expressed in terms of partial waves given by $e^{ikz} = \sum_{l=0}^{\infty} i^l (2l+1) j_l(kr) p_l(\cos \theta)$, obtain the expression for differential cross-section	6
		$(\sigma(\theta))$ as a function phase shift (δ_l) . Where $j_l(kr) = \frac{\sin(kr - \frac{l\pi}{2})}{kr}$ in the limit $r \to 0$.	6
92	3	In low energy n-p scattering, If $E = 1$ MeV and range of interaction is $r_0 = 2$ fm, show that angular momentum is zero.	
93	3	In n-p scattering, if $e^{ikz} = \sum_{l=0}^{\infty} i^l (2l+1) j_l(kr) p_l(\cos \theta)$, where plane wave function is expanded as a function of angular momentum <i>l</i> . Show that differential cross-section ($\sigma(\theta)$) is a function phase shift (δ_l). Where $j_l(kr) = \frac{\sin(kr - \frac{l\pi}{2})}{kr}$ in the limit $r \to 0$.	
94	3	Calculate angular momentum of $E = 2 MeV$ neutron, by assuming neutron-proton interaction range $r_0 = 2 fm$.	
95	3	Show that $\sigma_{total} = \frac{4\pi}{k^2} \sin^2(\delta_0)$, for low energy n-p scattering.	
96	3	With supporting experimental evidence, explain the exchange character of nuclear force.	
97	3	Explain the spin dependence and charge symmetric properties of nuclear of nuclear force.	
98	3	Discuss the general features of nuclear forces based on the experimental evidences.	
99	3	Explain the spin dependence and tensor character of nuclear of nuclear force.	
100	3	Discuss in detail the classification of particles based on their spin.	9
101	3	Outline the elementary ideas of standard model.	
102	3	What are strange particles? Explain the strangeness quantum number with examples. 9	
103	3	What are nuclear forces? With necessary details explain the spin dependence and charge independence character of nuclear forces.	
104	3	Explain the classification of fundamental forces. Give their salient features comparing and contrasting their basic properties.	
105	3	Explain the octet symmetry of baryons and mesons using weight diagram.	
106	3	Discuss the Yukawa's theory of nuclear force.	12
107	3	Discuss the conservation laws of elementary particles with examples.	12

		St. Philomena's College(Autonomous), Mys	uru			
		I/II/III/IV Semester M.Sc. Examination Month	ı – Year			
		Subject:				
		Title:				
T	Time: 3 hours Max. Marks:70					
Ins	struc	tion: Answer any one full question from Section	-A, Section-B			
		and Section-C and any four questions from Secti	ion - D.			
		Section - A				
1.	a.	Question to be asked from unit I	10			
	b.	Question to be asked from unit I	18			
		OR				
2.	a.	Question to be asked from unit I	18			
	b.	Question to be asked from unit I	10			
	-1	Section - B				
3.	a.	Question to be asked from unit II	18			
	b.	Question to be asked from unit II				
		OR				
4.	а.	Question to be asked from unit II	18			
	b.	Question to be asked from unit II				
	1	Section - C				
5.	a.	Question to be asked from unit III	18			
	b.	Question to be asked from unit III				
C		OR Outline to be also before with UI				
6.	а. ь	Question to be asked from unit III	18			
	b. Question to be asked from unit III					
7.	Section - D Question to be asked from unit I 04					
7. 8.	Question to be asked from unit I					
9.	Question to be asked from unit I Question to be asked from unit II					
9. 10.	-	Question to be asked from unit II04Question to be asked from unit II04				
11.		Question to be asked from unit II04Question to be asked from unit III04				
$\frac{11}{12}$		Question to be asked from unit III04Question to be asked from unit III04				
14.						

For 3 and 4 credit Courses

Note : Marks of Section A, B and C can be any combinations of 18. For example (12+6), (10+8), (9+9), (10+4+4), (8+6+4) etc,.