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S1.No Question Marks
1 Define subbasis of topological space with an example. 2m
2 Let A and B denote subsets of a space X. Prove that AUB=AUB. 2m
3 Find the boundary and the interior of the subsets A = {z x y/y =0}. 2m
A Show that if X = {a,b, c} the collection of all one point subsets of X is )
m
a basis for the discrete topology on X.
) Prove that one point sets are closed in Haussdorff space. 2m
: If B is a basis for the topology of X and Y C X. Show that the collection )
m
By = {BNY/B € B} is a basis for the subspace topology on Y.
7 If Ais a subset of a topological space. Prove that A = IntAU BdA. 2m
8 If Ais a subsets of a space X. Prove taht IntA and BdA are disjoint. 2m
9  Find the set of all limit points of A = {% n € Z*} . 2m
10 Define a T space. Is Ty space Haussdorff? Justify. 2m
11 2m

Define Homeomorphism with an example.
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Prove that the composite map of two continuous maps is continuous.
Suppose that f : X — Y is continuous. A C X, and z € X. If x is a
limit point of A, is it necessarily true that f(x) a limit point of f(A)?
Justify.

If Ais a connected subspace of a space X and A C B C A. Prove that
B is also conneted.

Show that the unit ball B™ is path connected in R".

Let Y =[0,1) U (1, 2] be a subspace of R with standard topology. Check
wheather Y is connnected or not.

Define a locally path connected space.

1
Show that X = {0} U {— ‘n e Z*} of R is compact.

n

Show that every closed subsets of a compact space is compact.
Show that a component in a topological space is connected.
Define a quotient map with an example.

Define a linear Continuom.

Define a path connected space.

Define a locally path connected space.

Is the space R; is connected? Why?

Is compact subset of a topological space is closed? Justify.
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Is the set (0,1) compact in R? Why?
Show that every closed subset of a compact space is compact.

Show that (0, 1] is not compact in the space R.

Show that a bijective continuous mapping from a compact space to a
Hausdorff space is a homomorphism.

Give an example of a topological space that is not compact but is locall

compact.

Define Lebesque number.

Justify with an example that a limit point compact space need not be
compact.

Let X be a set and 7; be the collection of all subsets U of X such that
X — U is either finite or all of X. Prove that 7/ is a topology on X.
Let X be a topological space. let A be a subset of X. Then prove that
x € Aif and only if every open set U containg z intersects A.

Prove that a space X is connected if and only if its only subsets that are
both open and closed are () and X itself.

Prove that if a collection of connected subsets have a point in common,

then the union of elements of the collection is connected.

Prove that continuous image of a connected space is connected.
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Let X be a topological space. Then prove that each path component of
X is contained in a component of X. Also, show that if X is locally path

connected, then they are equal.

State and prove Tube lemma.

Let X be a compact space and Y be an order set in the order topology.
If f: X — Y is continuous, then prove that there exist ¢,d € X such
that f(c) < f(z) < f(d) V =z € X.

Let X be a topological space and Y be a subspace of X. Prove that a
subset A of Y is closed in YV if and only if A = C NY where C is some
closed set in X.

Let X be a Ti- space, A be a subset of X and x € X. Then prove that
x € A’ if and only if every neighbourhood of x contains infinitely many
points of A.

Let f : X — Y be a mappig from a metrizable space X into a topological
spave Y. Prove that f is continuous if and only if for every sequence {z,}
in X converging to xz, the sequence {f(x,)} converges to f(z) in Y.

Let L be a linear continum in the order topology. Then prove that every

iterval or a ray in L is connected.
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Let X be a topological space. Prove that the path components of X are
disjoint, path connected subsets whose union equals X and each path
connected set intersects only one of them.

Prove that a space is locally connected if and only if has a basis consisting

of connected sets

Prove that the product of finitely many compact space is compact.

Let Y be a subspace of a topological space X. Prove that Y is compact
in subspace topology if and only if every covering of Y by sets open in
X has a finite sub-collection that covers Y.

Let X be a simply ordered set with the least upper bound property. Then
prove that every closed interval in X is compact.

Prove that a subset of R"™ is compact if and only if it is closed and
bounded.

Let X be a Hausdorff space. then prove that X is locally compact if and
only if for each x € X, each open set U of x, there is an open set V'
containing x such that V is compact and V C U.

Show that for any set X, the collection 7 generated by the basis B forms
a topology on X. Prove that the lower limit topology on R is strictly

finer than the standard topology on R.
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Let B and B’ be bases for topologies 7 and 7’ respectively. Prove that 7/
is finer than 7 if and only if for each x € X and each element B’ € B’
such that © € B’ C B. Let S be a subbasis for a topology on X. Then
prove that the collection B of all finite intersection of elements of S form
a basis for a topology on X.

Define the order topology on X. Let X be an ordered set in the or-
dered topology and Y be a convex subset of X. Then prove that the
subspace topology and the order topology on Y are the same. Let X
and Y be two topological spaces and § = {7r1_1(U) : U 15 open in X} U
{ng(V) : V' is open in Y} . Then prove that S is a subasis for the prod-
uct topology on X x Y.

Let X be a topological space and A be a subset of X. Then prove that
r € A if and only if every open set U containing x intersects A. Let X
be a topological space and Y be a subspace of X. Prove that a subset A
of Y is closed in Y if and only if A = C NY where C is some closed set

in X.
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Let X, Y be two topological spaces and f : X — Y be a map. Then
prove that the following are equivalent.

(). f is continuous.

(ii). For every subset A of X, f(A) c f(A).

(iii). For every closed subset B of Y, f~'(B) is closed in X. State and
prove Pasting Lemma.

Show that X is a Hausdorff space if and only if the diagonal

A ={xxz/r e X} is closed in X x X. Let X be a topological space,
A C X. Then prove that A= AU A",

Prove that R™ is metrizable. Show that composite maps of continuous
functions are continuous.

Let f: A — X xY be given by the equation f(a) = (fi1(a), fo(a)), where
fi:A— X and fy: A — Y. Prove that f is continuous if and only if f;
and f5 are continuous. Prove that arbitraty product of Hausdorff spaces
is Hasudorft.

State and prove the Metrization theorem for R under the product topol-
ogy.

State and prove sequence lemma. Let f, : X — Y be a sequence of

continuous functions from a topological space into a metric space. Show

that if f,, — f uniformly, then f is continuous.
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Prove that the product of connected spaces in the product topoloy is
connected.

Let X be a metrizable space. Prove that the following are equivalent:

1. X is compact.

2. X is limit point compact.

3. X is sequentially compact.

Skook sk oskok sk kokosk sk okok skokokskokok
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Time - 3 Hours Maximum Marks-70

Section A

Answer the following questions 4 x1=4

1. (a) The lower limit topology on R is than the standard topology on R.

(i) not comparable (ii) strictly coarser

(i) strictly finer (iv) coarser

(b) The closure of the set of rational numbers Q is

(i) Q (ii) C (iii) R (iv) None of the above

(c) R¥ is metrizable under
(i) box topology (ii) product topology

(iii) both (i) and (ii) (iv) None of the above

(d) Compact subset of a Hausdorff space is

(i) connected (ii) compact (iii) open (iv) closed

Section B

Answer the following questions 3 x2=6
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(a) Find the boundary and the interior of the subsets A = {x x y/y = 0}.
(b) Define a T} space. Is T} space Haussdorff? Justify.
(c) If A is a connected subspace of a space X and A C B C A. Prove that
B is also conneted.
Section C
Answer any three of the following questions 3 x 10= 30
Define the order topology on X. If X is an ordered set in the ordered topology

and Y be a convex subset of X, then prove that the subspace topology and
the order topology on Y are the same. Further, if X and Y are two topologi-
cal spaces and S = {7 '(U) : U is open in X } U{m; " (V) : V is open in Y} .

Then prove that § is a subasis for the product topology on X x Y.

Show that X is a Hausdorff space if and only if the diagonal
A ={rxxz/r e X}isclosed in X x X. And if X is a topological space with

AC X, prove that A =AU A’

Prove that R™ is metrizable. Show that composite maps of continuous func-

tions are continuous.

If f: A — X xY is given by the equation f(a) = (fi(a), f2(a)), where
fi:A— X and fo: A — Y. Prove that f is continuous if and only if f; and
f2 are continuous. Also, state and prove Pasting Lemma.
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Section D

Answer any three of the following questions 3 x 10= 30

Prove that a space X is connected if and only if its only subsets that are both
open and closed are () and X itself. Further, show that continuous image of a

connected space is connected.

If X is a topological space, then prove that each path component of X is
contained in a component of X. Prove that a space is locally connected if and

only if has a basis consisting of connected sets

Prove that a subset of R" is compact if and only if it is closed and bounded.

State and prove Tube lemma.

Let X be a metrizable space. Prove that the following are equivalent:
(i). X is compact.
(ii). X is limit point compact.

(iii). X is sequentially compact.
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