St.Philomena's College (Autonomus), Mysore

PG Department of Mathematics

Question Bank (Revised Curriculum 2020 onwards)

First Year - Third Semester

Course Title (Paper Title): Topology-I Q.P.Code-87322

\mathbf{Unit}	Sl.No	Question	Marks
1	1	Define subbasis of topological space with an example.	$2 \mathrm{m}$
1	2	Let A and B denote subsets of a space X. Prove that $\overline{A \cup B} = \overline{A} \cup \overline{B}$	3. 2m
1	3	Find the boundary and the interior of the subsets $A = \{x \times y/y = 0\}$	}. 2m
1	4	Show that if $X = \{a, b, c\}$ the collection of all one point subsets of X	T is 2m
		a basis for the discrete topology on X .	
1	5	Prove that one point sets are closed in Haussdorff space.	2m
1	6	If \mathcal{B} is a basis for the topology of X and $Y \subset X$. Show that the collect	ion 2m
		$\mathcal{B}_Y = \{B \cap Y/B \in \mathcal{B}\}$ is a basis for the subspace topology on Y.	
1	7	If A is a subset of a topological space. Prove that $\overline{A} = IntA \cup BdA$.	2m
1	8	If A is a subsets of a space X. Prove taht $IntA$ and BdA are disjoint	2m
1	9	Find the set of all limit points of $A = \left\{ \frac{1}{n} : n \in \mathbf{Z}^+ \right\}$.	$2 \mathrm{m}$
1	10	Define a T_1 space. Is T_1 space Haussdorff? Justify.	2m
1	11	Define Homeomorphism with an example.	$2 \mathrm{m}$

Prove that the composite map of two continuous maps is continuous. Suppose that $f: X \to Y$ is continuous. $A \subset X$, and $x \in X$. If x is a 2 13 2mlimit point of A, is it necessarily true that f(x) a limit point of f(A)? Justify. If A is a connected subspace of a space X and $A \subset B \subset \overline{A}$. Prove that 14 2m2 B is also conneted. 2 15 2mShow that the unit ball B^n is path connected in \mathbf{R}^n . Let $Y = [0,1) \cup (1,2]$ be a subspace of **R** with standard topology. Check 16 2 2mwheather Y is connected or not. 2 17 2mDefine a locally path connected space. Show that $X = \{0\} \cup \left\{\frac{1}{n} : n \in \mathbf{Z}^+\right\}$ of **R** is compact. 2 18 2m2 19 2mShow that every closed subsets of a compact space is compact. 2 20 2mShow that a component in a topological space is connected. 2 21 2mDefine a quotient map with an example. 3 22 2mDefine a linear Continuom. 23 2m3 Define a path connected space. 3 24 2m

2m

2m

2m

2

3

3

25

26

12

Is compact subset of a topological space is closed? Justify.

Define a locally path connected space.

Is the space \mathbf{R}_l is connected? Why?

4	27	Is the set $(0,1)$ compact in \mathbb{R} ? Why?	2m	
4	28	Show that every closed subset of a compact space is compact.	2m	
4	29	Show that $(0,1]$ is not compact in the space \mathbf{R} .	2m	
4	30	Show that a bijective continuous mapping from a compact space to a	$2 \mathrm{m}$	
		Hausdorff space is a homomorphism.		
4	31	Give an example of a topological space that is not compact but is locall	2m	
		compact.		
4	32	Define Lebesque number.	2m	
4	33	Justify with an example that a limit point compact space need not be	$2 \mathrm{m}$	
	99	compact.		
1	34	Let X be a set and τ_f be the collection of all subsets U of X such that	$5\mathrm{m}$	
		$X-U$ is either finite or all of X. Prove that τ_f is a topology on X.		
1	35	Let X be a topological space. let A be a subset of X . Then prove that	5m	
		$x \in \bar{A}$ if and only if every open set U containg x intersects A .		
3	36	Prove that a space X is connected if and only if its only subsets that are	$5\mathrm{m}$	
		both open and closed are \emptyset and X itself.		
3	37	Prove that if a collection of connected subsets have a point in common,	5m	
		then the union of elements of the collection is connected.		
3	38	Prove that continuous image of a connected space is connected	$5 \mathrm{m}$	

		Let X be a topological space. Then prove that each path component of	
3	39	X is contained in a component of X . Also, show that if X is locally path	$5\mathrm{m}$
		connected, then they are equal.	
4	40	State and prove Tube lemma.	$5 \mathrm{m}$
		Let X be a compact space and Y be an order set in the order topology.	
4	41	If $f: X \to Y$ is continuous, then prove that there exist $c, d \in X$ such	$5\mathrm{m}$
		that $f(c) \le f(x) \le f(d) \ \forall \ x \in X$.	
		Let X be a topological space and Y be a subspace of X . Prove that a	
1	42	subset A of Y is closed in Y if and only if $A = C \cap Y$ where C is some	$7 \mathrm{m}$
		closed set in X .	
		Let X be a T_1 - space, A be a subset of X and $x \in X$. Then prove that	
1	43	$x \in A'$ if and only if every neighbourhood of x contains infinitely many	$7 \mathrm{m}$
		points of A .	
		Let $f: X \to Y$ be a mappig from a metrizable space X into a topological	
2	44	spave Y. Prove that f is continuous if and only if for every sequence $\{x_n\}$	$7 \mathrm{m}$
		in X converging to x, the sequence $\{f(x_n)\}$ converges to $f(x)$ in Y.	
3	45	Let L be a linear continum in the order topology. Then prove that every	$7\mathrm{m}$
		iterval or a ray in L is connected	

		Let X be a topological space. Prove that the path components of X are	
3	46	disjoint, path connected subsets whose union equals X and each path	$7\mathrm{m}$
		connected set intersects only one of them.	
3	47	Prove that a space is locally connected if and only if has a basis consisting	7m
		of connected sets	
4	48	Prove that the product of finitely many compact space is compact.	$7\mathrm{m}$
		Let Y be a subspace of a topological space X . Prove that Y is compact	
4	49	in subspace topology if and only if every covering of Y by sets open in	$7\mathrm{m}$
		X has a finite sub-collection that covers Y .	
4	50	Let X be a simply ordered set with the least upper bound property. Then	$7\mathrm{m}$
	30	prove that every closed interval in X is compact.	
4	51	Prove that a subset of \mathbb{R}^n is compact if and only if it is closed and	7m
		bounded.	
		Let X be a Hausdorff space. then prove that X is locally compact if and	
4	52	only if for each $x \in X$, each open set U of x , there is an open set V	$7 \mathrm{m}$
		containing x such that \overline{V} is compact and $\overline{V} \subset U$.	
		Show that for any set X , the collection τ generated by the basis $\mathcal B$ forms	
1	53	a topology on X . Prove that the lower limit topology on $\mathbb R$ is strictly	10m
		finer than the standard topology on \mathbb{R} .	

1

is finer than τ if and only if for each $x \in X$ and each element $B' \in \mathcal{B}'$ such that $x \in B' \subset B$. Let \mathcal{S} be a subbasis for a topology on X. Then prove that the collection \mathcal{B} of all finite intersection of elements of \mathcal{S} form a basis for a topology on X.

10m

10m

Let \mathcal{B} and \mathcal{B}' be bases for topologies τ and τ' respectively. Prove that τ'

55

1

dered topology and Y be a convex subset of X. Then prove that the subspace topology and the order topology on Y are the same. Let X and Y be two topological spaces and $S = \{\pi_1^{-1}(U) : U \text{ is open in } X\} \cup \{\pi_2^{-1}(V) : V \text{ is open in } Y\}$. Then prove that S is a subasis for the product topology on $X \times Y$.

Let X be a topological space and A be a subset of X. Then prove that

Define the order topology on X. Let X be an ordered set in the or-

1

 $x \in \overline{A}$ if and only if every open set U containing x intersects A. Let X be a topological space and Y be a subspace of X. Prove that a subset A 10m of Y is closed in Y if and only if $A = C \cap Y$ where C is some closed set in X.

Let X, Y be two topological spaces and $f: X \to Y$ be a map. Then prove that the following are equivalent.

(i). f is continuous. 2

1

2

2

2

10m

- (ii). For every subset A of X, $f(\bar{A}) \subset \overline{f(A)}$.
- (iii). For every closed subset B of Y, $f^{-1}(B)$ is closed in X. State and prove Pasting Lemma.

Show that X is a Hausdorff space if and only if the diagonal

- 58 $\triangle = \{x \times x / x \in X\}$ is closed in $X \times X$. Let X be a topological space, 10m $A \subset X$. Then prove that $\overline{A} = A \cup A'$.
- Prove that \mathbb{R}^n is metrizable. Show that composite maps of continuous 10m functions are continuous.

Let $f: A \to X \times Y$ be given by the equation $f(a) = (f_1(a), f_2(a))$, where

- $f_1:A\to X$ and $f_2:A\to Y$. Prove that f is continuous if and only if f_1 and f_2 are continuous. Prove that arbitrary product of Hausdorff spaces is Hasudorff.
- State and prove the Metrization theorem for \mathbb{R}^{ω} under the product topology.

State and prove sequence lemma. Let $f_n: X \to Y$ be a sequence of

62 continuous functions from a topological space into a metric space. Show 10m that if $f_n \to f$ uniformly, then f is continuous.

Prove that the product of connected spaces in the product topoloy is $$10{\rm m}$$ connected.

Let X be a metrizable space. Prove that the following are equivalent:

1. X is compact.

2. X is limit point compact.

4

64

3. X is sequentially compact.

Blue Print of the Question Paper St. Philomena's College (Autonomous), Mysore M. Sc-Mathematics (CBCS)

I/II/III/IV- Semester Examination: 2020-21

Subject:

Time: 3 Hours Max Marks: 70

No		Marks	
	Section – A (MCQ)	•	
а		1	
b		1	
С		1	
d		1	
	Section – B	•	
a		2	
b		2	
С		2	
	Section – C		
	Answer any three from the following		
3			
4		3x10=30	
5			
6			
	Section – D	•	
	Answer any three from the following		
7			
8		3x10=30	
9			
10		7	
	a b c d a b c 5 6	Section – A (MCQ) a b c d Section – B a b c Section – C Answer any three from the following 3 4 5 6 Section – D Answer any three from the following 7 8 9	

Model Question Paper

Time - 3 Hours Maximum Marks-70

Section A

Answer the following questions 4	4 × 1= 4
1. (a) The lower limit topology on \mathbb{R} is than the standard topol	ogy on \mathbb{R} .
(i) not comparable (ii) strictly coarser	
(iii) strictly finer (iv) coarser	
(b) The closure of the set of rational numbers $\mathbb Q$ is	
(i) \mathbb{Q} (ii) \mathbb{C} (iii) \mathbb{R} (iv) None of the above	
(c) \mathbb{R}^{ω} is metrizable under	
(i) box topology (ii) product topology	
(iii) both (i) and (ii) (iv) None of the above	
(d) Compact subset of a Hausdorff space is	
(i) connected (ii) compact (iii) open (iv) closed	

Section B

Answer the following questions

 $3 \times 2 = 6$

- 2. (a) Find the boundary and the interior of the subsets $A = \{x \times y/y = 0\}$.
 - (b) Define a T_1 space. Is T_1 space Haussdorff? Justify.
 - (c) If A is a connected subspace of a space X and $A \subset B \subset \overline{A}$. Prove that B is also connected.

Section C

Answer any *three* of the following questions

 $3 \times 10 = 30$

- 3. Define the order topology on X. If X is an ordered set in the ordered topology and Y be a convex subset of X, then prove that the subspace topology and the order topology on Y are the same. Further, if X and Y are two topological spaces and $S = \{\pi_1^{-1}(U) : U \text{ is open in } X\} \cup \{\pi_2^{-1}(V) : V \text{ is open in } Y\}$. Then prove that S is a subasis for the product topology on $X \times Y$.
- 4. Show that X is a Hausdorff space if and only if the diagonal $\triangle = \{x \times x / x \in X\}$ is closed in $X \times X$. And if X is a topological space with $A \subset X$, prove that $\overline{A} = A \cup A'$.
- 5. Prove that \mathbb{R}^n is metrizable. Show that composite maps of continuous functions are continuous.
- 6. If $f:A\to X\times Y$ is given by the equation $f(a)=(f_1(a),f_2(a))$, where $f_1:A\to X$ and $f_2:A\to Y$. Prove that f is continuous if and only if f_1 and f_2 are continuous. Also, state and prove Pasting Lemma.

Section D

Answer any *three* of the following questions

 $3 \times 10 = 30$

- 7. Prove that a space X is connected if and only if its only subsets that are both open and closed are \emptyset and X itself. Further, show that continuous image of a connected space is connected.
- 8. If X is a topological space, then prove that each path component of X is contained in a component of X. Prove that a space is locally connected if and only if has a basis consisting of connected sets
- 9. Prove that a subset of \mathbb{R}^n is compact if and only if it is closed and bounded. State and prove Tube lemma.
- 10. Let X be a metrizable space. Prove that the following are equivalent:
 - (i). X is compact.
 - (ii). X is limit point compact.
 - (iii). X is sequentially compact.
