St. Philomena's College (Autonomus), Mysuru
 PG Department of Mathematics
 Question Bank (Revised Curriculum 2020 onwards)
 Second Year - Third Semester (2020 -22 Batch)
 Course Title (Paper Title): Theory of Numbers Qp. Code: 87331

Unit1
1 If P_{n} is the $n^{\text {th }}$ prime, then prove that $P_{n} \leq 2^{2^{n-1}}$. 2 m

Show that $\phi\left(p^{\alpha}\right)=p^{\alpha}-p^{\alpha-1}$ for prime p and $\alpha \geq 1$ where ϕ is Euler toient functions.

Show that f and g are completely multiplicative, then show that $f g$ is
Show that Möbius function is multiplicative but not completely multiplicative. completely multiplicative.

Show that the Mangolt function is not multiplicative function.
If $\frac{p_{n}}{q_{n}}, \frac{p_{n-1}}{q_{n-1}}$, are the $n^{\text {th }}$ and $(n-1)^{\text {th }}$ convergence of a continued fraction $\left[a_{0}, a_{1}, a_{2}, \ldots, a_{n}\right]$, then show that $\frac{p_{n}}{q_{n}}-\frac{p_{n-1}}{q_{n-1}}=\frac{(-1)^{n}}{q_{n} q_{n-1}}$.
If $\frac{p_{n}}{q_{n}}, \frac{p_{n-2}}{q_{n-2}}$, are the $n^{\text {th }}$ and $(n-2)^{\text {th }}$ convergence of a continued fraction $\left[a_{0}, a_{1}, a_{2}, \ldots, a_{n}\right]$, then show that $\frac{p_{n}}{q_{n}}-\frac{p_{n-2}}{q_{n-2}}=\frac{(-1)^{n} a_{n}}{q_{n} q_{n-2}}$.

Determine rational number represented by the simple continued fraction

By means of continued fraction determine the general solutions of the Diophantine equation $19 x+51 y=1$.

By means of continued fraction determine the general solutions of the
Diophantine equation $18 x+5 y=24$.

Determine the infinite continued fraction representaion of irrational number $\frac{1+\sqrt{13}}{2}$.
Is $\sqrt{2}$ equivalent to $\sqrt{3}$? Justify your answer.
Is $\sqrt{2}$ equivalent to $1+\sqrt{2}$? Justify your answer.

35 Show that the product of two odd primes is never a perfect number.
36 Show that every even perfect number is triangular number.
37 If n is a perfect number then show that $\sum_{d / n} \frac{1}{d}=2$.
38 Show that no powers of a prime can be perfect.
2 m

39
State and prove the Fundamental theorem of Arithmetic.
6 m

40 Show that there are infinitely many primes.
4 m

State prime number theorem. Show that $p_{n} \sim n \log n$ where p_{n} denote the $n^{\text {th }}$ prime.

$$
42
$$

Show that the Fermat number $\left(F_{n}, F_{m}\right)=1$ for $n \neq m$.
4 m

43 State and prove Pepin's Test.
10 m
44 Show that the series $\sum_{p-\text { prime }} \frac{1}{p}$ is divergent.
10 m

45 Show that $\sqrt[m]{N}$ is irrationals unless N is the $m^{\text {th }}$ power of an integer.
4 m

46 Prove that e^{y} is irrational for any rational $y \neq 0$.
$6 m$
47 Show that π^{2} is irrational.
$6 m$
48 Show that the number e is irrational.
4 m

49
If $\frac{h}{k}$ and $\frac{h^{\prime}}{k^{\prime}}$ are two successive terms of Farey series $\mathfrak{F}_{\mathfrak{n}}$, then show that $k h^{\prime}-h k^{\prime}=1$.

If $n>1$, show that no two successive terms of Farey series $\mathfrak{F}_{\mathfrak{n}}$ have the
50 same denominator.
Prove that $\sum_{d / n} \mu(d)= \begin{cases}1, & \text { if } n=1 \\ 0, & \text { if } n>1,\end{cases}$
where $\mu(n)$ is the Möbius func-
tion.
52 If $\phi(n)$ is Euler's functions, then show that $\sum_{d / n} \phi(d)=n$. $6 m$

53 For $n \geq 1$, show that the Euler function $\phi(n)=n \prod_{p / n}\left(1-\frac{1}{p}\right)$.
$6 m$

For any two integers m, n, show that $\phi(m \cdot n)=\phi(m) \cdot \phi(n) \cdot \frac{d}{\phi(d)}$, where
$d=\operatorname{gcd}(m, n)$.

55

56

57

If f is multiplicative, then show that f is completely multiplicative if and only if $f^{-1}(n)=\mu(n) f(n) \quad \forall n \geq 1$.

If p_{n} and q_{n} are defined by $p_{0}=a_{0}, p_{1}=a_{1}, p_{n}=a_{n} p_{n-1}+p_{n-2}$, for $n \geq 2$, and $q_{0}=1, q_{1}=a_{1}, q_{n}=a_{n} q_{n-1}+q_{n-2}$, for $n \geq 2$. Show that $\left[a_{0}, a_{1}, a_{2}, \cdots, a_{n}\right]=\frac{p_{n}}{q_{n}}$.
If $a_{1}, a_{2}, \ldots, a_{n}$ are positive reals, then show that even convergent $\frac{p_{2 n}}{q_{2 n}}$
66 increase strictly with n, while odd convergent $\frac{p_{2 n-1}}{q_{2 n-1}}$ decrease strictly with n. Möbius function .

Prove that the set of all arithmetic functions f with $f(1) \neq 0$ forms an abelian group with respect to the Dirichlet multiplication.

State and prove Möbius inversion formula.
Show that $\sum_{d \mid n} \Lambda(d)=\log n$ for $n \geq 1$, where $\Lambda(n)$ is Mangoldt function. Show that for $n \geq 1, \Lambda(n)=\sum_{d \mid n} \mu(d) \cdot \log \frac{n}{d}=-\sum_{d \mid n} \mu(d) \cdot \log d$.

Given f with $f(1)=1$. Show that f is multiplicative if and only if $f\left(p_{1}^{\alpha_{1}}, p_{2}^{\alpha_{2}}, \ldots, p_{k}^{\alpha_{k}}\right)=f\left(p_{1}^{\alpha_{1}}\right) f\left(p_{2}^{\alpha_{2}}\right) \cdots f\left(p_{k}^{\alpha_{k}}\right)$, for all primes p_{i} and all integers α_{i}.

Given f with $f(1)=1$. If f is multiplicative . Then show that f is completely multiplicative if and only if $f\left(p^{\alpha}\right)=f(p)^{\alpha}$.

If f and g are multiplicative, then show that their Dirichlet product $f * g$ is also multiplicative.

If both g and $f * g$ are multiplicative. Show that f is also multiplicative.

Show that every odd convergent is greater than any even convergent.

4 m
$6 m$

If two simple continued fractions $\left[a_{0}, a_{1}, a_{2}, \cdots, a_{N}\right]$ and

81 Show that a periodic continued fraction is a quadratic surd.
Show that the continued fraction which represents a quadratic surd is
$\left[b_{0}, b_{1}, b_{2}, \cdots, b_{M}\right]$ have the same value and $a_{N}>1, b_{M}>1$, then prove that $N=M$ and the continued fractions are identical.

Show that the convergent to a simple continued fraction are in their lowest terms.

Prove that any rational number can be represented by a finite simple continued fraction.

Find the value of the continued fraction $[-2 ; 1,2,5,7,4,1,6]$.
Explain a method to determine the general solution of a linear Diophantine equation $a x+b y=c$, where a, b, c are integers.

73 Solve the linear Diophantine equation $172 x+50 y=500$.
Show that any infinite simple continued fraction $\left[a_{0}, a_{1}, a_{2}, \ldots,\right]$ converges.

Show that two infinite simple continued fractions which have the same value are identical.

Show that every irrational number can be expressed in just one way as an infinite simple continued fraction.

Show that the value of any infinite simple continued fraction is an irrational number.

Define Equivalent numbers. Show that the relation is an equivalence relation.

Show that any two rational numbers are equivalent.
Show that two irrational numbers ξ and η are equivalent if and only if $\xi=$ $\left[a_{0}, a_{1}, a_{2}, \ldots a_{m}, c_{0}, c_{1}, c_{2}, \ldots,\right]$ and $\xi=\left[b_{0}, b_{1}, b_{2}, \ldots b_{n}, c_{0}, c_{1}, c_{2}, \ldots,\right]$. periodic.

83 State and prove Hurwitz theorem.
Define perfect number. If $2^{k}-1$ is prime $(k>1)$ then prove that
84
$2^{k-1}\left(2^{k}-1\right)$ is perfect and every even perfect number is of this form.
85 Show that an even perfect number ends in the digit 6 or 8 .

86 Prove that $2^{10}\left(2^{11}-1\right)$ is not a perfect number.
87 Show that a perfect square can't be a perfect number.
For any even perfect number $n>6$. Show that the sum of the digits of 88 n is congruent to $1(\bmod 9)$.

If $n>6$ is an even perfect number. Show that n can be expressed as 89

4 m

Blue Print of the Question Paper
St. Philomena's College (Autonomous), Mysore
M. Sc-Mathematics (CBCS)

I/II/III/IV- Semester Examination: 2020-21 Subject:
Time: 3 Hours
Max Marks: 70

Model Question Paper

St.Philomena's College (Autonomous), Mysuru
 M.Sc Mathematics
 Third Semester Examination 2021-22
 Subject - Theory of Numbers Qp Code: 87331

Time - 3 Hours
Maximum Marks-70

Section A

Answer the following questions

$$
4 \times 1=4
$$

1. (a) The only prime of the form $n^{3}-1$ is
(i) 7
(ii) 9
(iii) 5
(iv) 11
(b) Identity function is
(i) completely multiplicative
(ii) multiplicative
(iii) Neither completely multiplicative nor multiplicative
(iv) None of the above
(c) The convergence of the simple continued fraction $[3,1,2]$ is
(i) $\frac{11}{2}$
(ii) $\frac{11}{3}$
(iii) $\frac{13}{4}$
(iv) $\frac{13}{3}$
(d) The infinite simple continued fraction [1] converges to
(i) $\frac{1+\sqrt{7}}{2}$
(ii) $\frac{1+\sqrt{5}}{2}$
(iii) $\frac{1+\sqrt{5}}{3}$
(iv) $\frac{1+\sqrt{7}}{3}$

Section B

Answer the following questions

$$
3 \times 2=6
$$

2. (a) If $p \neq 5$ is an odd prime, then prove that $p^{2}-1$ or $p^{2}+1$ is divisible by 10.
(b) Compute the convergence of the simple continued fraction $[-3,1,1,1,1,3]$.
(c) Is $\sqrt{2}$ equivalent to $\sqrt{3}$? Justify your answer.

Section C

Answer any three of the following questions
3. (a) State and prove the Fundamental theorem of Arithmetic.
(b) Show that there are infinitely many primes.
4. (a) Show that the series $\sum_{p-\text { prime }} \frac{1}{p}$ is divergent.
5. (a) For $n \geq 1$, show that the Euler function $\phi(n)=n \prod_{p / n}\left(1-\frac{1}{p}\right)$
(b) For any two integers m, n, show that $\phi(m \cdot n)=\phi(m) \cdot \phi(n) \cdot \frac{d}{\phi(d)}$, where $d=\operatorname{gcd}(m, n)$.
6. (a) Given f with $f(1)=1$. Show that f is multiplicative if and only if $f\left(p_{1}^{\alpha_{1}}, p_{2}^{\alpha_{2}}, \ldots, p_{k}^{\alpha_{k}}\right)=f\left(p_{1}^{\alpha_{1}}\right) f\left(p_{2}^{\alpha_{2}}\right) \cdots f\left(p_{k}^{\alpha_{k}}\right)$, for all primes p_{i} and all integers α_{i}.
(b) Given f with $f(1)=1$. If f is multiplicative . Then show that f is completely multiplicative if and only if $f\left(p^{\alpha}\right)=f(p)^{\alpha}$.

Section D

Answer any three of the following questions

$$
3 \times 10=30
$$

7. (a) Show that every odd convergent is greater than any even convergent. 6
(b) Find the value of the continued fraction $[-2 ; 1,2,5,7,4,1,6]$.
8. (a) Prove that any rational number can be represented by a finite simple continued fraction.
(b) Solve the linear Diophantine equation $172 x+50 y=500$.
9. (a) Show that two infinite simple continued fractions which have the same value are identical.
(b) Show that the value of any infinite simple continued fraction is an irrational number.
10. (a) Define perfect number. If $2^{k}-1$ is prime $(k>1)$ then prove that $2^{k-1}\left(2^{k}-1\right)$ is perfect and every even perfect number is of this
form.
