St. Philomena's College (Autonomus), Mysuru PG Department of Mathematics Question Bank (Revised Curriculum 2020 onwards) Second Year - Third Semester (2020 -22 Batch) Course Title (Paper Title): Theory of Numbers Qp. Code: 87331

Unit	Sl.No	Question	Marks
1	1	If P_n is the n^{th} prime, then prove that $P_n \leq 2^{2^{n-1}}$.	$2\mathrm{m}$
1	2	Prove that the only prime p for which $3p + 1$ is a perfect square is $p = 5$	5. 2m
1	3	Prove that the only prime of the form $n^3 - 1$ is 7.	$2\mathrm{m}$
1	4	If $p \neq 5$ is an odd prime, then prove that $p^2 - 1$ or $p^2 + 1$ is divisible b 10.	y 2m
1	5	If $p \ge 5$ is a prime number, show that $p^2 + 2$ is composite number.	$2\mathrm{m}$
1	6	Show that Fermat Number F_n for $n = 5$ is composite.	$2\mathrm{m}$
1	7	Show that any Fermat Number F_n can be written as the difference of two squares.	of 2m
1	8	Prove that Fermat Number F_n is never a perfect square.	$2\mathrm{m}$
1	9	For $n > 0$, show that Fermat Number F_n is never a triangular number.	2m
1	10	Find the successor of $\frac{4}{9}$ in Farey series \mathfrak{F}_{13} .	$2\mathrm{m}$
1	11	Find the successor of $\frac{2}{3}$ in Farey series \mathfrak{F}_{10} .	$2\mathrm{m}$
1	12	Prove that the numbers of elements in Farey series $\mathfrak{F}_{\mathfrak{n}}$ is $1 + \sum_{i=1}^{n} \phi(i)$.	$2\mathrm{m}$
1	13	Find the sum of all elements in Farey series \mathfrak{F}_n .	$2\mathrm{m}$
2	14	Show that $\phi(p^{\alpha}) = p^{\alpha} - p^{\alpha-1}$ for prime p and $\alpha \ge 1$ where ϕ is Euler toient functions.	er 2m
2	15	Show that identity function is completely multiplicative.	$2\mathrm{m}$
2	16	Show that Möbius function is multiplicative but not completely multiplicative.	i- 2m
2	17	Show that f and g are completely multiplicative, then show that fg is completely multiplicative.	is 2m

2	18	Show that the Mangolt function is not multiplicative function.	$2\mathrm{m}$
3	19	If $\frac{p_n}{q_n}$, $\frac{p_{n-1}}{q_{n-1}}$, are the n^{th} and $(n-1)^{th}$ convergence of a continued fraction $[a_0, a_1, a_2, \dots, a_n]$, then show that $\frac{p_n}{q_n} - \frac{p_{n-1}}{q_{n-1}} = \frac{(-1)^n}{q_n q_{n-1}}$.	2m
3	20	If $\frac{p_n}{q_n}$, $\frac{p_{n-2}}{q_{n-2}}$, are the n^{th} and $(n-2)^{th}$ convergence of a continued fraction $[a_0, a_1, a_2, \dots, a_n]$, then show that $\frac{p_n}{q_n} - \frac{p_{n-2}}{q_{n-2}} = \frac{(-1)^n a_n}{q_n q_{n-2}}$.	2m
3	21	Determine rational number represented by the simple continued fraction $[4; 2, 1, 3, 1, 2, 4].$	2m
3	22	Determine rational number represented by the simple continued fraction $[0; 1, 2, 3, 4, 3, 2, 1].$	2m
3	23	Express the rational number as finite simple continued fractions $\frac{187}{57}$.	$2\mathrm{m}$
3	24	Express the rational number as finite simple continued fractions $\frac{71}{55}$.	$2\mathrm{m}$
3	25	Compute the convergence of the simple continued fraction $[1, 2, 3, 3, 2, 1]$.	$2\mathrm{m}$
3	26	Compute the convergence of the simple continued fraction $[-3, 1, 1, 1, 1, 3]$.	2m
3	27	By means of continued fraction determine the general solutions of the Diophantine equation $19x + 51y = 1$.	2m
3	28	By means of continued fraction determine the general solutions of the Diophantine equation $18x + 5y = 24$.	2m
4	29	Evaluate the infinite simple continued fraction $[\overline{2;3}]$.	$2\mathrm{m}$
4	30	Evaluate the infinite simple continued fraction $[1; \overline{2}]$.	$2\mathrm{m}$
4	31	Determine the infinite continued fraction representation of irrational number $\sqrt{7}$.	2m
4	32	Determine the infinite continued fraction representation of irrational number $\frac{1+\sqrt{13}}{2}$.	2m
4	33	Is $\sqrt{2}$ equivalent to $\sqrt{3}$? Justify your answer.	$2\mathrm{m}$
4	34	Is $\sqrt{2}$ equivalent to $1 + \sqrt{2}$? Justify your answer.	2m

4	35	Show that the product of two odd primes is never a perfect number.	$2\mathrm{m}$
4	36	Show that every even perfect number is triangular number.	$2\mathrm{m}$
4	37	If n is a perfect number then show that $\sum_{d/n} \frac{1}{d} = 2.$	2m
4	38	Show that no powers of a prime can be perfect.	$2\mathrm{m}$
1	39	State and prove the Fundamental theorem of Arithmetic.	$6\mathrm{m}$
1	40	Show that there are infinitely many primes.	$4\mathrm{m}$
1	41	State prime number theorem. Show that $p_n \sim n \log n$ where p_n denote the n^{th} prime.	6m
1	42	Show that the Fermat number $(F_n, F_m) = 1$ for $n \neq m$.	4m
1	43	State and prove Pepin's Test.	10m
1	44	Show that the series $\sum_{p-prime} \frac{1}{p}$ is divergent.	$10\mathrm{m}$
1	45	Show that $\sqrt[m]{N}$ is irrationals unless N is the m^{th} power of an integer.	$4\mathrm{m}$
1	46	Prove that e^y is irrational for any rational $y \neq 0$.	$6\mathrm{m}$
1	47	Show that π^2 is irrational.	$6\mathrm{m}$
1	48	Show that the number e is irrational.	4m
1	49	If $\frac{h}{k}$ and $\frac{h'}{k'}$ are two successive terms of Farey series \mathfrak{F}_n , then show that $kh' - hk' = 1$.	6m
1	50	If $n > 1$, show that no two successive terms of Farey series \mathfrak{F}_n have the same denominator.	4m
2	51	Prove that $\sum_{d/n} \mu(d) = \begin{cases} 1, & \text{if } n = 1 \\ 0, & \text{if } n > 1, \end{cases}$ where $\mu(n)$ is the Möbius function.	4m
2	52	If $\phi(n)$ is Euler's functions, then show that $\sum_{n \in \mathcal{A}} \phi(d) = n$.	6m
2	53	For $n \ge 1$, show that the Euler function $\phi(n) = n \prod_{p/n} \left(1 - \frac{1}{p}\right)$.	6m

2	54	For any two integers m, n , show that $\phi(m.n) = \phi(m).\phi(n).\frac{d}{\phi(d)}$, where $d = \gcd(m, n).$	4m
2	55	Show that $\phi(n) = \sum_{d/n} \mu(d) \frac{n}{d}$, where $\phi(n)$ is Euler function and $\mu(n)$ is Möbius function .	6m
2	56	Prove that the set of all arithmetic functions f with $f(1) \neq 0$ forms an abelian group with respect to the Dirichlet multiplication.	10m
2	57	State and prove Möbius inversion formula.	6m
2	58	Show that $\sum_{d n} \Lambda(d) = \log n$ for $n \ge 1$, where $\Lambda(n)$ is Mangoldt function.	6m
2	59	Show that for $n \ge 1$, $\Lambda(n) = \sum_{d n} \mu(d) \cdot \log \frac{n}{d} = -\sum_{d n} \mu(d) \cdot \log d.$	4m
		Given f with $f(1) = 1$. Show that f is multiplicative if and only if	
2	60	$f(p_1^{\alpha_1}, p_2^{\alpha_2}, \dots, p_k^{\alpha_k}) = f(p_1^{\alpha_1}) f(p_2^{\alpha_2}) \cdots f(p_k^{\alpha_k})$, for all primes p_i and all	6m
		integers α_i .	
2	61	Given f with $f(1) = 1$. If f is multiplicative . Then show that f is	$4\mathrm{m}$
		completely multiplicative if and only if $f(p^{\alpha}) = f(p)^{\alpha}$.	
2	62	If f and g are multiplicative, then show that their Dirichlet product $f\ast g$	$6\mathrm{m}$
		is also multiplicative.	
2	63	If both g and $f * g$ are multiplicative. Show that f is also multiplicative.	$6\mathrm{m}$
2	64	If f is multiplicative, then show that f is completely multiplicative if and	նա
2	01	only if $f^{-1}(n) = \mu(n) f(n) \forall n \ge 1.$	UIII
		If p_n and q_n are defined by $p_0 = a_0, p_1 = a_1, p_n = a_n p_{n-1} + p_{n-2}$, for	
3	65	$n \ge 2$, and $q_0 = 1$, $q_1 = a_1$, $q_n = a_n q_{n-1} + q_{n-2}$, for $n \ge 2$. Show that	6m
		$[a_0, a_1, a_2, \cdots, a_n] = \frac{p_n}{q_n}.$	
		If a_1, a_2, \ldots, a_n are positive reals, then show that even convergent $\frac{p_{2n}}{q_{2n}}$	
3	66	increase strictly with n, while odd convergent $\frac{p_{2n-1}}{q_{2n-1}}$ decrease strictly	4m
		with <i>n</i> .	
3	67	Show that every odd convergent is greater than any even convergent.	6m

3	68	If two simple continued fractions $[a_0, a_1, a_2, \cdots, a_N]$ and $[b_0, b_1, b_2, \cdots, b_N]$ have the same value and $a_N \ge 1$, $b_N \ge 1$, then	$6\mathrm{m}$	
		prove that $N = M$ and the continued fractions are identical.		
		Show that the convergent to a simple continued fraction are in their	4m	
3	69	lowest terms.		
		Prove that any rational number can be represented by a finite simple		
3	70	continued fraction.	$6\mathrm{m}$	
3	71	Find the value of the continued fraction $[-2; 1, 2, 5, 7, 4, 1, 6]$.	4m	
9	79	Explain a method to determine the general solution of a linear Diophan-	0	
3	12	tine equation $ax + by = c$, where a, b, c are integers.	om	
3	73	Solve the linear Diophantine equation $172x + 50y = 500$.	4m	
4	74	Show that any infinite simple continued fraction $[a_0, a_1, a_2,,]$	бm	
1	11	converges.	0111	
4	75	Show that two infinite simple continued fractions which have the same	$6\mathrm{m}$	
-	10	value are identical.		
4	76	Show that every irrational number can be expressed in just one way as	$6\mathrm{m}$	
	10	an infinite simple continued fraction.		
4	77	Show that the value of any infinite simple continued fraction is an irra-	4m	
		tional number.		
4	78	Define Equivalent numbers. Show that the relation is an equivalence	$4\mathrm{m}$	
		relation.		
4	79	Show that any two rational numbers are equivalent.	$4\mathrm{m}$	
4	80	Show that two irrational numbers ξ and η are equivalent if and only if $\xi =$	$6\mathrm{m}$	
		$[a_0, a_1, a_2, \dots a_m, c_0, c_1, c_2, \dots,]$ and $\xi = [b_0, b_1, b_2, \dots b_n, c_0, c_1, c_2, \dots,].$		
4	81	Show that a periodic continued fraction is a quadratic surd.	4m	
4	82	Show that the continued fraction which represents a quadratic surd is	10m	
	~-	periodic.	_ \	

4	83	State and prove Hurwitz theorem.	10m	
4	84	Define perfect number. If $2^k - 1$ is prime $(k > 1)$ then prove that	10m	
1	04	$2^{k-1}(2^k-1)$ is perfect and every even perfect number is of this form.		
4	85	Show that an even perfect number ends in the digit 6 or 8.	$6\mathrm{m}$	
4	86	Prove that $2^{10}(2^{11}-1)$ is not a perfect number.	4m	
4	87	Show that a perfect square can't be a perfect number.	4m	
4	88	For any even perfect number $n > 6$. Show that the sum of the digits of	6m	
-	00	$n ext{ is congruent to } 1 \pmod{9}.$		
4	89	If $n > 6$ is an even perfect number. Show that n can be expressed as	6m	
		sum of consecutive odd cubes.		

Blue Print of the Question Paper St. Philomena's College (Autonomous), Mysore M. Sc-Mathematics (CBCS) I/II/III/IV- Semester Examination: 2020-21 Subject:

SI. N	lo Section -	Marks
1	Section -	- A (MCO)
1	а	
· • ·	•	1
ΙΓ	b	1
	c	1
	d	1
	Secti	on – B
2	а	2
	b	2
	c	2
	Secti	on – C
	Answer any three	from the following
	3	
	4	3x10=30
ΙΓ	5	
	6	
	Secti	on – D
	Answer any three	from the following
	7	
	8	3x10=30
	9	
	10	

Model Question Paper

St.Philomena's College (Autonomous), Mysuru M.Sc Mathematics Third Semester Examination 2021-22 Subject - Theory of Numbers Qp Code: 87331

Time - 3 Hours

Maximum Marks-70

 $4 \times 1 = 4$

Section A

Answer the following questions

1. (a) The only prime of the form $n^3 - 1$ is

(i) 7 (ii) 9 (iii)5 (iv) 11

- (b) Identity function is
 - (i) completely multiplicative (ii) multiplicative

(iii) Neither completely multiplicative nor multiplicative

- (iv) None of the above
- (c) The convergence of the simple continued fraction [3, 1, 2] is
 - (i) $\frac{11}{2}$ (ii) $\frac{11}{3}$ (iii) $\frac{13}{4}$ (iv) $\frac{13}{3}$
- (d) The infinite simple continued fraction $[\overline{1}]$ converges to

(i)
$$\frac{1+\sqrt{7}}{2}$$
 (ii) $\frac{1+\sqrt{5}}{2}$ (iii) $\frac{1+\sqrt{5}}{3}$ (iv) $\frac{1+\sqrt{7}}{3}$

Section B

Answer the following questions $3 \times 2 = 6$

2. (a) If $p \neq 5$ is an odd prime, then prove that $p^2 - 1$ or $p^2 + 1$ is divisible by 10.

(b) Compute the convergence of the simple continued fraction [-3, 1, 1, 1, 1, 3].

(c) Is $\sqrt{2}$ equivalent to $\sqrt{3}$? Justify your answer.

Section C

Answer any *three* of the following questions $3 \times 10 = 30$ 3. (a) State and prove the Fundamental theorem of Arithmetic. 6 (b) Show that there are infinitely many primes. 4 4. (a) Show that the series $\sum_{n=mime} \frac{1}{p}$ is divergent. 10

5. (a) For
$$n \ge 1$$
, show that the Euler function $\phi(n) = n \prod_{p/n} \left(1 - \frac{1}{p}\right)$ 6

(b) For any two integers m, n, show that $\phi(m.n) = \phi(m).\phi(n).\frac{d}{\phi(d)}$, where $d = \gcd(m, n).$ 4

- 6. (a) Given f with f(1) = 1. Show that f is multiplicative if and only if f(p₁^{α₁}, p₂^{α₂},..., p_k^{α_k}) = f(p₁^{α₁}) f(p₂^{α₂}) ··· f(p_k^{α_k}), for all primes p_i and all integers α_i.
 - (b) Given f with f(1) = 1. If f is multiplicative . Then show that f is completely multiplicative if and only if $f(p^{\alpha}) = f(p)^{\alpha}$.

Section D

Answer any <i>three</i> of the following questions 3	\times 10= 3
--	----------------

7. (a) Show that every odd convergent is greater than any even convergent. 6

- (b) Find the value of the continued fraction [-2; 1, 2, 5, 7, 4, 1, 6].
- 8. (a) Prove that any rational number can be represented by a finite simple continued fraction. 6
 - (b) Solve the linear Diophantine equation 172x + 50y = 500. 4
- 9. (a) Show that two infinite simple continued fractions which have the same value are identical. 6

- (b) Show that the value of any infinite simple continued fraction is an irrational number.
- 10. (a) Define perfect number. If $2^k 1$ is prime (k > 1) then prove that $2^{k-1}(2^k - 1)$ is perfect and every even perfect number is of this form. 10
