St. Philomena's College (Autonomous), Mysore PG Department of Physics
 III Semester
 Course: Condensed Matter Physics - 1 QP Code: 88332

Question Bank

$\begin{gathered} \text { Sl. } \\ \text { No. } \end{gathered}$	Module	Question	Marks
1.	1	The dielectric constant of He at 273 K is 1.000074 . The density of He atoms is $2.7 \times 10^{25} / \mathrm{m}^{3}$. Calculate the induced dipole moment in each atom when the He gas is in an electric field of $3 \times 10^{4} \mathrm{~V} / \mathrm{m}$.	5
2.	1	The dielectric constant of sulphur is 3.4. Assuming a cubic lattice for its structure calculate the electronic polarizability of lattice of sulphur. Given, density of sulphur $=2.07 \mathrm{~g} / \mathrm{cc}$ and atomic weight $=$ 32.07 .	5
3.	1	The dielectric constant of He gas at NTP is 1.0000684. Calculate the electronic polarizability of He atom if the gas contains 2.7 x 10^{25} atoms $/ \mathrm{m}^{3}$.	5
4.	1	The refractive index of diamond is 2.4. Calculate the electronic polarizability of carbon atom. Given, $\mathrm{N}=1.8 \times 10^{23}$ atoms/cc.	5
5.	1	The relative permittivity of argon at 273 K and 1 atm pressure is 1.000435. Calculate the polarizabilty of the Ar atom. Given: Number of atoms of Argon at NTP $=2.6 \times 10^{25} / \mathrm{m}^{3}$.	5
6.	1	An elemental solid dielectric material has polarizability of $7 \times 10^{-40} \mathrm{~F}$ m^{2}. Assuming the local field to be Lorentz field, calculate the dielectric constant of the material if it contains 3×10^{28} atoms $/ \mathrm{m}^{3}$.	5
7.	1	The dielectric constant of He gas at NTP is 1.0000684. Calculate the electronic polarizability of He if the gas contains $2.7 \times 10{ }^{25}$ atoms $/ \mathrm{m}^{3}$.	5
8.	1	A solid elemental dielctric containing 3×10^{28} atom $/ \mathrm{m}^{3}$ shows an electronic polarizability of $10^{-40} \mathrm{~F}-\mathrm{m}^{2}$. Calculate the dielectric constant of the material dielectric.	5
9.	1	Find the electronic polarization produced in a dielectric medium of relative permittivity 15 in the presence of an electric field of $500 \mathrm{~V} / \mathrm{m}$.	5
10.	1	For a solid, the dielectric constant is 1.56 , density is $1.899 \mathrm{~kg} / \mathrm{m}^{3}$ and atomic weight $=63.5$. Estimate the polarizability of the solid.	5

11.	1	A parallel plate capacitor consists of 2 plates each of area $5 \times 10^{-4} \mathrm{~m}^{2}$. The two plates are separated by a distance of $1.5 \times 10^{-3} \mathrm{~m}$ and the gap between the two plates is filled with a material of dielectric constant $\boldsymbol{\varepsilon}_{\mathbf{r}}=6$. Calculate the charge on the capacitor if it is connected to a 100 V dc supply.	5
12.	1	An elemental solid contains 5×10^{28} identical atoms per m^{3}, each with a polarizability of $2 \times 10^{-40} \mathrm{~F}-\mathrm{m}^{2}$. Assuming the local field to be a Lorentz field, calculate the ratio of local field to the applied field.	5
13.	1	There are 1.6×10^{20} molecules $/ \mathrm{m}^{3}$ in NaCl vapour. Determine the orientational polarization at room temperature if the vapour is subjected to an electric field of $50,000 \mathrm{~V} / \mathrm{cm}$. Assume that NaCl molecule consists of Na^{+}and Cl^{-}ions separated by 0.25 nm .	5
14.	1	The following data refers to a dielectric material: $\in \mathbf{r}=4.94$ and $^{2}{ }^{2}$ $=2.69$, where n is the index of refraction. Calculate the ratio between electronic and ionic polarizabilities for this material.	5
15.	1	Calculate the dipolar polarizability of NH_{3} at 448 K . Given: the dipole moment of NH_{3} molecule $=5.30 \times 10^{-30} \mathrm{C}-\mathrm{m}, \mathrm{k}_{\mathrm{b}}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$.	5
16.	1	Calculate the field strength required to reach 0.1% of the saturation value of the orientational polarization of a dipolar gas at room temperature if the dipoles have a strength of 1 debye unit.	5
17.	1	Calculate the atomic polarizability in a solid with concentration of 10^{23} atoms $/ \mathrm{cm}^{3}$. Given: the dielectric constant $\epsilon=10$.	5
18.	1	A paraelectric substance has 10^{26} atoms $/ \mathrm{m}^{3}$, the electric dipole moment of each atom is $3.4 \times 10^{-28} \mathrm{C}-\mathrm{m}$. Calculate the paraelectric susceptibility at 500 K .	5
19.	1	The polarizability of NH_{3} is $1.74 \times 10^{-39} \mathrm{~F}-\mathrm{m}^{2}$ and $2.42 \times 10^{-39} \mathrm{~F}-\mathrm{m}^{2}$ respectively at 448 and 309 K . Calculate the dipole moment of the molecule.	5
20.	1	Calculate the orientational polarizability of water molecule at room temperature. Given the dipole moment of water $=1.9 \times 10^{29} \mathrm{C}-\mathrm{m}$.	5
21.	1	Assuming there are 10^{27} molecules $/ \mathrm{m}^{3}$ in HCl vapour calculate the orientational polarization at room temperature if the vapour is subjected to an electric field of $10^{5} \mathrm{~V} / \mathrm{m}$. The dipole moment of HCl molecule is $3.46 \times 10^{-30} \mathrm{C}-\mathrm{m}$.	5
22.	1	The dielectric constant of a solid is 5. It is placed between the plates of a capacitor which are 1 mm apart and which is charged to 100 Volts. Calculate the local field in the dielectric solid.	5

23.	1	Calculate the orientational polarizability of HCl molecule at room temperature. Given the dipole moment of HCl molecule is equal to $3.46 \times 10^{-30} \mathrm{C}-\mathrm{m}$.	5
24.	1	On what factors does the breakdown voltage of a dielectric material depend? Explain	5
25	1	Explain the mechanisms that lead to dielectric breakdown.	5
26	1	Explain absorption of energy in dielectrics.	5
27	1	Explain graphically how the real and the imaginary components of the complex dielectric constant vary with respect to the frequency of the applied field.	5
28	1	Explain the terms (i) dielectric breakdown (ii) dipole relaxation	5
29	1	For ammonium dihydrogen phosphate the Curie temperature is 390 K and Curie constant is 400 K . Find the dielectric constant of the material at $\mathrm{T}=407 \mathrm{~K}$.	5
30	1	Calculate the polarization of BaTiO^{3} when the oxygen ion in the lattice is displaced by $0.1 \AA$ relative to Barium ions. Given: the cube edge of $\mathrm{BaTiO}^{3}=4.00 \AA$.	5
31	1	Find the dielectric constant of Rochelle salt along a-axis at $23^{\circ} \mathrm{C}$, whose Curie temperature is 296 K and the Curie constant $=178 \mathrm{~K}$.	5
32	1	In BaTiO_{3}, saturation polarization P_{S} at room temperature is 8 x 10^{4} esu. The volume of the unit cell is $64 \times 10^{-24} \mathrm{~cm}^{3}$. Find the dipole moment of the unit cell of BaTiO_{3}.	5
33	1	In BaTiO_{3} crystal the unit cell is a cube of side $4 \AA$. If Ba and Ti ions are moved by $0.1 \AA$ w.r.to oxygen ions, calculate the polarization P of the sample.	5
34	1	Calculate the dipole moment of BaTiO_{3} having saturation polarization $8 \times 10^{4} \mathrm{esu} / \mathrm{cm}^{2}$. Given its lattice constant $\mathrm{a}=4 \AA$.	5
35	1	For a ferroelectric material $\gamma=0.044, \mathrm{~N}=10^{21} / \mathrm{cm}^{3}$ at a temperature $\left(T_{c}\right)=260 \mathrm{~K}$. Find the dipole moment of the material.	5
36	1	Define the terms (i) electric flux density and (ii) electric susceptibility χ_{e}. Show that the electric susceptibity is related to the dielectric constant ϵ_{r} in the form $\chi_{\mathrm{e}}=\left(\epsilon_{\mathrm{r}}-1\right)$.	5
37	1	Explain what is ionic polarizability.	5
38	1	Derive an expression for electronic polarization and explain its temperature dependence.	5
39	1	What are polar and non-polar dielectrics? Explain with examples.	5
40	1	Explain what is dielectric constant. Show that the dielectric constant ϵ_{r} is related to electronic polarizability in the form: $\varepsilon_{r}=1+\frac{N \alpha}{\varepsilon_{0}}$.	5

41	1	Define the terms (i) Electric dipole and (ii) Electric polarizaation.	5
42	1	Explain what are dielectrics and list any three important applications of dielectric solids.	5
43	1	Briefly describe ionic and orientational polarizations in a dielectric subjected to an electric field.	5
44	1	For a dielectric medium possessing cubic symmetry, show that: $\frac{\varepsilon_{r}-1}{\varepsilon_{r}+2}=\frac{N \alpha}{3 \varepsilon_{0}} .$	5
45	1	Explain the terms (i) the complex dielectric constant and (ii) the phase factor.	5
46	1	Explain what is meant by (i) complex dielectric constant and (ii) relaxation time.	5
47	1	Explain what is complex dielectric constant.	5
48	1	Explain the terms (i) relaxation time and (ii) dielectric loss.	5
49	1	Explain the classification of ferroelectric crystals with examples.	5
50	1	Describe the basic properties of BaTiO3.	5
51	1	What are the objections against the dipole theory of ferroelectrics? Explain.	5
52	1	Explain the mechanism of domain growth in ferroelectrics	5
53	1	Describe any six general properties of ferroelectric materials.	5
54	1	Discuss the dipole theory of ferroelectricity.	5
55	1	Describe the basic properties of Rochelle salt.	5
56	2	Write a note on ferromagnetic domains.	5
57	2	List any five important properties of ferromagnetic materials.	5
58	2	Describe with suitable diagram the Neel's two sub-lattice model.	5
59	2	Compare the paramagnetic spin-spin and spin-lattice relaxation.	5
60	2	Estimate the Weiss constant for a ferromagnetic material showing curie temperature of 1000 K . Given: The number of atomic dipoles per unit volume $\mathrm{N}=10^{28}$ and $\mu_{B}=9.27 \times 10^{-24 J} J / T$.	5
61	2	Calculate the group velocity for the spin wave, in a ferromagnetic solid, in the long wavelength limit. Given: $\mathrm{J}_{\mathrm{e}}=0.1 \mathrm{eV}$ and $\mathrm{S}=1 / 2$, lattice constant $=7.87 \times 10^{-10} \mathrm{~m}$.	5
62	2	Find the magnetic moment of an electron and a proton. $\mathrm{m}_{\mathrm{e}}=9.101 \mathrm{x}$ $10^{-31} \mathrm{~kg}, \mathrm{~m}_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg}$ and $\mathrm{h}=6.626 \times 10^{-34}$.	5
63	2	Explain residual magnetism for a ferromagnetic material.	5
64	2	A paramagnetic material has a magnetic field intensity of $10^{4} \mathrm{~A} / \mathrm{m}$. If the susceptibility of the material room temperature is $3.7 \times 10^{-5} \mathrm{emu}$ then calculate the magnetization and flux density in the material.	5
65	2	Explain qualitatively the relaxation mechanism in paramagnetic solids.	5

66	2	Calculate the group velocity for the spin wave in the long wavelength limit for a ferromagnetic solid with $\mathrm{J}_{\mathrm{e}}=0.1 \mathrm{eV}$ and $\mathrm{S}=1 / 2$. Given: the lattice constant $\mathrm{a}=7.87 \AA$.	5
67	1	Discuss the classical theory of electronic polarization in dielectrics.	10
68	1	Explain the types of polarization of a dielectric solid when subjected to an electric field.	10
69	1	Discuss in detail, the different polarization mechanisms that exsist in dielectrics and explain their temperature dependence.	10
70	1	Discuss the theory of electronic polarization.	10
71	1	Derive Langevin-Debye equation for the total polarizability in a dielectric.	10
72	1	Explain a method of determining the dipole moment of gaseous molecules in the laboratory.	10
73	1	Explain a method of determining the dipole moment of gaseous molecules in the laboratory.	10
74	1	Obtain Clausius-Mosotti relation and hence Lorenz-Lorentz relation for a medium possessing cubic symmetry.	10
75	1	Derive an expression for the orientational polarization as a function of temperature in a polar dielectric material.	10
76	1	Explain what is meant by local field in a dielectric. Obtain expression for it in a dielectric medium possessing cubic symmetry.	10
77	1	Show that in the presence of the applied field of strength \vec{E}, the local field (\vec{E}) seen at any lattice site in a dielectric solid is given as $\vec{E}=\vec{E}_{0}+\frac{\vec{P}}{3 \varepsilon_{0}}$	10
78	1	Obtain Clausius-Mosotti relation relating macroscopic dielectric constant $\left(\epsilon_{\mathrm{r}}\right)$ with microscopic polarizability $\left(\alpha_{\mathrm{e}}\right)$.	10
79	1	Discuss with necessary theory the effect of temperature on the static dielectric constant of gases.	10
80	1	Obtain expression for the average energy dissipated per second per unit volume in a dielectric subjected to an ac field of frequency ω.	10
81	1	Obtain expressions for $\epsilon^{\prime}(\omega)$ and $\epsilon^{\prime \prime}(\omega)$ in terms of frequency ω and relaxation time τ and show that $\epsilon^{\prime \prime}(\omega)$ is a measure of the dielectric loss.	10
82	1	With relevant theory show that the energy absorbed by a dielectric in the presence of an applied field of frequency ω varies proportional to $\epsilon^{\prime \prime}(\omega)$.	10
83	1	Discuss with relevant theory and suitable figures the frequency dependence of the real and imaginary parts of the complex dielectric constant of a dielectric solid.	10
84	1	Explain with necessary theory the temperature dependence of spontaneous polarization in ferroelectric materials.	10
85	1	Describe the classification and properties of representative ferroelectrics.	10
86	1	Discuss with relevant theory the Curie-Weiss law for ferroelectrics.	10

87	2	What are magnons? Derive the magnon dispersion relation for one dimensional ferromagnetic spin waves.	10
88	2	What are spin waves? Obtain the dispersion relation for one dimensional antiferromagnetic spin waves.	10
89	2	Derive Bloch's T ${ }^{3 / 2}$ law for magnetization in ferromagnets.	10
90	2	Derive Bloch's T ${ }^{3 / 2}$ law for magnetization in antiferromagnets.	10
91	2	Discuss the theory of Casimir-Durpe for spin-lattice relaxation and obtain the expression for the real and imaginary parts of the complex magnetic susceptibility.	10
92	2	Explain the theory of ferromagnetism and also discuss temperature dependance of spontaneous magnetism.	10
93	2	With relevant theory explain Curie-Weiss law for ferromagnetics.	10
94	2	Discuss with relevant theory the effect of temperature on the magnetic susceptibility in the case of Ferrormagnetic material in its paramagnetic phase.	10
95	2	Discuss with necessary theory the Curie-Weiss law for ferromagnets.	10
96	2	Obtain the magnon dispersion relation for ferromagnets.	10
97	2	Using Neel's two sub lattice model obtain an expression for antiferromagnetic susceptibility at T> T_{N}.	10
98	2	Show that in the presence on an ac magnetic field of frequency ω the energy 'A' absorbed by paramagnetic material varies as $A \propto \chi$ ". Here $\chi^{\prime \prime}$ refers to the imaginary component of the complex paramagnetic susceptibility.	10

For 2 credit soft core courses

St. Philomena's College(Autonomous), Mysuru				
I/II/III/IV Semester M.Sc. Examination Month - Year				
Subject:				
Title:				
Time: 3 hours			Max. Marks:70	
Instruction: Answer any four full question from Section - A and any of the five questions from Section - B.				
Section - A				
1.	Question to b	it I		05
2.	Question to b	it I		05
3.	Question to b	it I		05
4.	Question to b	it II		05
5.	Question to b	it II		05
6.	Question to b	it II		05
Section-B				
7.	Question to b	it I		10
8.	Question to b	it I		10
9.	Question to b	it I		10
10.	Question to b	it II		10
11.	Question to b	it II		10
12.	Question to b	it II		10

Note: Marks of Section A and B can be any combinations of 5 and 10 respectively. For example in section - A we may have (3+2). In section-B we may have ($6+4$) and ($5+5$).

