St. Philomena's College (Autonomous), Mysore PG Department of Physics

III Semester

Course: Condensed Matter Physics - 1 QP Code: 88332

Question Bank

Sl. No.	Module	Question	
1.	1	The dielectric constant of He at 273K is 1.000074. The density of He atoms is 2.7×10^{25} /m ³ . Calculate the induced dipole moment in each atom when the He gas is in an electric field of 3×10^{4} V/m.	
2.	1	The dielectric constant of sulphur is 3.4. Assuming a cubic lattice for its structure calculate the electronic polarizability of lattice of sulphur. Given, density of sulphur = $2.07g/cc$ and atomic weight = 32.07 .	
3.	1	The dielectric constant of He gas at NTP is 1.0000684. Calculate the electronic polarizability of He atom if the gas contains 2.7 x 10^{25} atoms/m ³ .	
4.	1	The refractive index of diamond is 2.4. Calculate the electronic polarizability of carbon atom. Given, $N = 1.8 \times 10^{23}$ atoms/cc.	
5.	1	The relative permittivity of argon at 273K and 1 atm pressure is 1.000435. Calculate the polarizability of the Ar atom. Given: Number of atoms of Argon at NTP = $2.6 \times 10^{25}/m^3$.	
6.	1	An elemental solid dielectric material has polarizability of 7 x 10^{-40} F- m ² . Assuming the local field to be Lorentz field, calculate the dielectric constant of the material if it contains 3 x 10^{28} atoms/m ³ .	
7.	1	The dielectric constant of He gas at NTP is 1.0000684. Calculate the electronic polarizability of He if the gas contains 2.7 x 10 25 atoms/m ³ .	
8.	1	1 A solid elemental dielctric containing 3×10^{28} atom/m ³ shows an electronic polarizability of 10^{-40} F-m ² . Calculate the dielectric constant of the material dielectric.	
9.	1	Find the electronic polarization produced in a dielectric medium of relative permittivity 15 in the presence of an electric field of 500V/m.	
10.	1	For a solid, the dielectric constant is 1.56, density is 1.899 kg/m ³ and atomic weight = 63.5. Estimate the polarizability of the solid.	

	1		
		A parallel plate capacitor consists of 2 plates each of area $5 \times 10^{-4} \text{ m}^2$. The two plates are separated by a distance of 1.5×10^{-3} m and the gap	
11.	1	between the two plates is filled with a material of dielectric constant	5
		$\varepsilon_r = 6$. Calculate the charge on the capacitor if it is connected to a	
		100V dc supply.	
		An elemental solid contains 5 x 10^{28} identical atoms per m ³ , each	
12.	1	with a polarizability of 2 x 10^{-40} F-m ² . Assuming the local field to be	5
		a Lorentz field, calculate the ratio of local field to the applied field.	
		There are 1.6 $\times 10^{20}$ molecules/m ³ in NaCl vapour. Determine the	
13.	1	orientational polarization at room temperature if the vapour is	5
		subjected to an electric field of $50,000$ V/cm. Assume that NaCl	-
		molecule consists of Na ⁺ and Cl ⁻ ions separated by 0.25nm.	
14.	1	The following data refers to a dielectric material: $\epsilon_{\mathbf{r}} = 4.94$ and n ²	5
14.	1	=2.69, where n is the index of refraction. Calculate the ratio between electronic and ionic polarizabilities for this material.	5
		Calculate the dipolar polarizability of NH ₃ at 448K. Given: the dipole	
15.	1	moment of NH ₃ molecule = 5.30×10^{-30} C-m, $k_{b} = 1.38 \times 10^{-23}$ J/K.	5
		Calculate the field strength required to reach 0.1% of the saturation	
16.	1	value of the orientational polarization of a dipolar gas at room	5
		temperature if the dipoles have a strength of 1 debye unit.	
17.	1	Calculate the atomic polarizability in a solid with concentration of	5
		10^{23} atoms/cm ³ . Given: the dielectric constant $\epsilon = 10$.	
		A paraelectric substance has 10^{26}_{28} atoms/m ³ , the electric dipole	_
18.	1	moment of each atom is 3.4×10^{-28} C-m. Calculate the paraelectric	5
		susceptibility at 500K.	
19.	1	The polarizability of NH3 is 1.74×10^{-39} F-m ² and 2.42×10^{-39} F-m ²	5
19.	1	respectively at 448 and 309K. Calculate the dipole moment of the molecule.	5
		Calculate the orientational polarizability of water molecule at	
20.	1	room temperature.	5
		Given the dipole moment of water $= 1.9 \times 10^{29}$ C-m.	
		Assuming there are 10^{27} molecules/m ³ in HCl vapour calculate	
21	1	the orientational polarization at room temperature if the vapour	5
21.		is subjected to an electric field of 10^5 V/m. The dipole moment	J
		of HCl molecule is 3.46×10^{-30} C-m.	
		The dielectric constant of a solid is 5. It is placed between the plates	
22.	1	of a capacitor which are 1mm apart and which is charged to 100	5
		Volts. Calculate the local field in the dielectric solid.	

·	•		
		Calculate the orientational polarizability of HCl molecule at room	
23.	1	temperature. Given the dipole moment of HCl molecule is equal to	5
		3.46×10^{-30} C-m.	
24.	1	On what factors does the breakdown voltage of a dielectric material	5
24.	1	depend? Explain	5
25	1	Explain the mechanisms that lead to dielectric breakdown.	5
26	1	Explain absorption of energy in dielectrics.	5
		Explain graphically how the real and the imaginary components of the	
27	1	complex dielectric constant vary with respect to the frequency of the	5
		applied field.	5
28	1	Explain the terms (i) dielectric breakdown (ii) dipole relaxation	
		For ammonium dihydrogen phosphate the Curie temperature is 390K	
29	1	and Curie constant is 400K. Find the dielectric constant of the material	5
		at $T = 407$ K.	
		Calculate the polarization of $BaTiO^3$ when the oxygen ion in the	
30	1	lattice is displaced by 0.1Å relative to Barium ions. Given: the cube	5
		edge of $BaTiO^3 = 4.00$ Å.	
31		Find the dielectric constant of Rochelle salt along a-axis at	
	1 2	23 [°] C, whose Curie temperature is 296K and the Curie constant	5
		= 178K.	
		In BaTiO ₃ , saturation polarization P_S at room temperature is 8 x	
32	1	10^4 esu. The volume of the unit cell is 64 x 10^{-24} cm ³ . Find the	5
		dipole moment of the unit cell of BaTiO ₃ .	
		In BaTiO ₃ crystal the unit cell is a cube of side 4Å. If Ba and Ti	
33	1	ions are moved by 0.1Å w.r.to oxygen ions, calculate the	5
55	1	polarization P of the sample.	5
		Calculate the dipole moment of BaTiO ₃ having saturation	
34	1	polarization 8 x 10 ⁴ esu/ cm ² . Given its lattice constant $a = 4$ Å.	5
		21 3	
		For a ferroelectric material $\gamma = 0.044$, N = 10 ⁻⁷ /cm ⁻³ at a	
35	1 temperature $(T_c) = 260K$. Fi	temperature $(T_c) = 260$ K. Find the dipole moment of the	5
		material.	
		Define the terms (i) electric flux density and (ii) electric	
36	1	susceptibility χ_e . Show that the electric susceptibility is related	5
		to the dielectric constant ϵ_r in the form $\chi_e = (\epsilon_r - 1)$.	_
37	1	Explain what is ionic polarizability.	
Derive an expression for electronic polarization and ex		Derive an expression for electronic polarization and explain its	5
38	1	temperature dependence.	5
39	1	What are polar and non-polar dielectrics? Explain with examples.	5
		Explain what is dielectric constant. Show that the dielectric constant	
40	1	ϵ_r is related to electronic polarizability in the form: $\varepsilon_r = 1 + \frac{N\alpha}{\varepsilon_0}$.	5
		ε_0	

41	1	Define the terms (i) Electric dipole and (ii) Electric polarization.	5
71	1	Explain what are dielectrics and list any three important applications	
42 1 A delectric solids.			5
		Briefly describe ionic and orientational polarizations in a dielectric	
43	1	subjected to an electric field.	5
		For a dielectric medium possessing cubic symmetry, show that:	
44	1		5
	1	$\frac{\varepsilon_r - 1}{\varepsilon_r + 2} = \frac{N\alpha}{3\varepsilon_0}.$	5
		Explain the terms (i) the complex dielectric constant and (ii) the phase	
45	1	factor.	5
		Explain what is meant by (i) complex dielectric constant and (ii)	
46	1	relaxation time.	5
47	1	Explain what is complex dielectric constant.	5
48	1	Explain the terms (i) relaxation time and (ii) dielectric loss.	5
49	1	Explain the classification of ferroelectric crystals with examples.	5
50	1	Describe the basic properties of BaTiO ₃ .	5
		What are the objections against the dipole theory of ferroelectrics?	
51	1	Explain.	5
52	1	Explain the mechanism of domain growth in ferroelectrics	
53	1	Describe any six general properties of ferroelectric materials.	
54	1	Discuss the dipole theory of ferroelectricity.	5 5
55	1	Describe the basic properties of Rochelle salt.	5
56	2	Write a note on ferromagnetic domains.	
57	2	List any five important properties of ferromagnetic materials.	
58	2	Describe with suitable diagram the Neel's two sub-lattice model.	
59	2	Compare the paramagnetic spin-spin and spin-lattice relaxation.	
		Estimate the Weiss constant for a ferromagnetic material showing	
60	2	curie temperature of 1000K. Given: The number of atomic dipoles per	5
		unit volume N=10 ²⁸ and $\mu_B = 9.27X10^{-24J} J/T$.	
		Calculate the group velocity for the spin wave, in a ferromagnetic	
61	2	solid, in the long wavelength limit. Given: $J_e=0.1eV$ and $S=1/2$, lattice	5
		$constant = 7.87 x 10^{-10} m.$	
\sim	2	Find the magnetic moment of an electron and a proton. me=9.101x	5
62	2	10^{-31} kg, m _p =1.67x10 ⁻²⁷ kg and h=6.626x10 ⁻³⁴ .	5
63	2	Explain residual magnetism for a ferromagnetic material.	
		A paramagnetic material has a magnetic field intensity of 10^4 A/m. If	
64	2	the susceptibility of the material room temperature is 3.7×10^{-5} emu	5
		then calculate the magnetization and flux density in the material.	
65	2	Explain qualitatively the relaxation mechanism in paramagnetic	5
05		solids.	5

	1				
66	2	Calculate the group velocity for the spin wave in the long wavelength limit for a ferromagnetic solid with $J_e=0.1$ eV and $S=1/2$. Given: the lattice constant $a = 7.87$ Å.			
67	1	Discuss the classical theory of electronic polarization in dielectrics.	10		
68	1	Explain the types of polarization of a dielectric solid when subjected to an electric field.			
69	1	Discuss in detail, the different polarization mechanisms that exsist in dielectrics and explain their temperature dependence.			
70	1	Discuss the theory of electronic polarization.	10		
71	1	Derive Langevin-Debye equation for the total polarizability in a dielectric.			
72	1	Explain a method of determining the dipole moment of gaseous molecules in the laboratory.			
73	1	Explain a method of determining the dipole moment of gaseous molecules in the laboratory.	10		
74	1	Obtain Clausius-Mosotti relation and hence Lorenz-Lorentz relation for a medium possessing cubic symmetry.			
75	1	Derive an expression for the orientational polarization as a function of temperature in a polar dielectric material.			
76	1	Explain what is meant by local field in a dielectric. Obtain expression for it in a dielectric medium possessing cubic symmetry.			
77	1	Show that in the presence of the applied field of strength \vec{E} , the local field (\vec{E}) seen at any lattice site in a dielectric solid is given as $\vec{E} = \vec{E}_0 + \frac{\vec{P}}{3\varepsilon_0}$			
78	1	Obtain Clausius-Mosotti relation relating macroscopic dielectric constant (ϵ_r) with microscopic polarizability (α_e).			
79	1	Discuss with necessary theory the effect of temperature on the static dielectric constant of gases.			
80	1	Obtain expression for the average energy dissipated per second per unit volume in a dielectric subjected to an ac field of frequency ω .			
81	1	Obtain expressions for $\epsilon'(\omega)$ and $\epsilon''(\omega)$ in terms of frequency ω and relaxation time τ and show that $\epsilon''(\omega)$ is a measure of the dielectric loss.			
82	1	With relevant theory show that the energy absorbed by a dielectric in the presence of an applied field of frequency ω varies proportional to $\epsilon''(\omega)$.			
83	1	Discuss with relevant theory and suitable figures the frequency dependence of the real and imaginary parts of the complex dielectric constant of a dielectric solid.			
84	1	Explain with necessary theory the temperature dependence of spontaneous polarization in ferroelectric materials.			
85	1	Describe the classification and properties of representative ferroelectrics.	10		
86	1	Discuss with relevant theory the Curie-Weiss law for ferroelectrics.			

87	2	What are magnons? Derive the magnon dispersion relation for one	10
dimensional ferromagnetic spin waves.		dimensional ferromagnetic spin waves.	10
88	2	What are spin waves? Obtain the dispersion relation for one	10
00	2	dimensional antiferromagnetic spin waves.	10
89	2	Derive Bloch's T ^{3/2} law for magnetization in ferromagnets.	
90	2	Derive Bloch's T ^{3/2} law for magnetization in antiferromagnets.	
		Discuss the theory of Casimir-Durpe for spin-lattice relaxation and	
91	2	obtain the expression for the real and imaginary parts of the complex	10
		magnetic susceptibility.	
02	2	Explain the theory of ferromagnetism and also discuss temperature	10
92	2	dependance of spontaneous magnetism.	10
93	2	With relevant theory explain Curie-Weiss law for ferromagnetics.	
		Discuss with relevant theory the effect of temperature on the magnetic	
94	2	susceptibility in the case of Ferrormagnetic material in its	10
		paramagnetic phase.	
95	2	Discuss with necessary theory the Curie-Weiss law for ferromagnets.	
96	2	Obtain the magnon dispersion relation for ferromagnets.	
97	2	Using Neel's two sub lattice model obtain an expression for	10
97	Z	antiferromagnetic susceptibility at $T>T_{N_{.}}$	10
		Show that in the presence on an ac magnetic field of frequency ω the	
00	2	energy 'A' absorbed by paramagnetic material varies as $A \propto \chi''$. Here	10
98	2	χ'' refers to the imaginary component of the complex paramagnetic	10
		susceptibility.	

St. Philomena's College(Autonomous), Mysuru				
I/II/III/IV Semester M.Sc. Examination Month – Year				
	Subject:			
	Title:			
Ti	Time: 3 hoursMax. Marks:70			
Inst	truction: Answer any four full question from S	Section – A and any of		
	the five questions from Section – B .			
Section - A				
1.	Question to be asked from unit I	05		
2.	Question to be asked from unit I	05		
3.	Question to be asked from unit I	05		
4.	Question to be asked from unit II	05		
5.	Question to be asked from unit II	05		
6.	6. Question to be asked from unit II			
	Section - B			
7.	Question to be asked from unit I	10		
8.	Question to be asked from unit I	10		
9.	Question to be asked from unit I	10		
10.	Question to be asked from unit II	10		
11.	Question to be asked from unit II	10		
12.	Question to be asked from unit II	10		

For 2 credit soft core courses

Note : Marks of Section A and B can be any combinations of 5 and 10 respectively. For example in section – A we may have (3+2). In section-B we may have (6+4) and (5+5).