St.Philomena's College (Autonomus), Mysore

PG Department of Mathematics

Question Bank (Revised Curriculum 2020 onwards)

Second Year - Third Semester (2020 - 22 Batch)

Course Title (Paper Title): Graph Theory Q.P.Code-87332

Unit	S.No	Question	Iarks
1	1	Define order and size of a graph. Find order and size of complete graph	. 2m
1	2	Draw all graphs with four points.	$2\mathrm{m}$
1	3	Define multi-graph and pseudograph with example.	$2\mathrm{m}$
1	4	What is the maximum number of lines in a graph with p points? Justify	. 2m
1	5	Draw two different (5,5) graph.	$2\mathrm{m}$
		Draw a graph with point representing the numbers $1, 2, 3,, 10$ in which	1
1	6	two points are adjacent if and only if they have a common divisor greater	r 2m
		than one.	
1	7	Define degree of a point in a graph. Draw all graphs on $p = 3$ points.	$2\mathrm{m}$
1	8	Define minimum degree of a graph with example.	$2\mathrm{m}$
1	9	Define Maximum degree of a graph with example.	$2\mathrm{m}$
1	10	Define regular graph. Draw all regular graph with four points.	$2\mathrm{m}$
1	11	Define cubic graph. Draw all cubic graph with eight points.	2m

1	12	Define complete graph with example.	2m
1	13	Define bridge point of a graph with example.	2m
1	14	For any connected graph G prove that $r(G) \leq diam(G) \leq 2r(G)$.	2m
1	15	Define isomorphism of two graphs. Draw all non-isomorphic graphs with	2m
		three points.	
1	16	Define complement and self complement of a graph with example.	2m
1	17	Define cut point of a graph with example.	$2\mathrm{m}$
1	18	Show that a (p,q) graph is a complete graph if and only if $q = \frac{p(p-1)}{2}$.	2m
1	19	If v is a cut point of G then show that v is not a cut point of \overline{G} .	2m
1	20	Define spanning subgraph of a graph. Draw all spanning subgraph of K_3 .	$2\mathrm{m}$
1	21	Define induced subgraph of a graph. Draw two induced subgraph of K_5 .	2m
1	22	Is complement of a complete graph is a subgraph of that graph? Justify.	2m
1	23	Define complete bipartite graph. Give an example of a bipartite graph	2m
		which is regular.	
1	24	Define block and end block of a graph with example.	2m
1	25	Define distance between two points with example.	2m
1	26	Construct a graph with $\kappa(G) = 3 \lambda(G) = 4$ and $\delta(G) = 5$.	2m
1	27	Define block index of point in a graph and find the block index of an	2m
		isolated point and a cut point.	

1	28	Define block graph of a graph. Draw block graph of $K_{1,6}$	2m
1	29	Draw two different graphs G_1 and G_2 such that block graph of G_1 is	2m
	20	isomorphic to block graph of G_2 .	2111
1	30	Define cut point graph of a graph with example.	$2\mathrm{m}$
1	31	Define point connectivity of a graph and find the point connectivity of	$2\mathrm{m}$
	0 -	$K_{m,n}$.	
1	32	Define line connectivity of a graph find the line connectivity of cycle with	$2\mathrm{m}$
		p number of points.	
1	33	Define tree. Draw all trees with four points.	2m
1	34	Draw all trees with seven points and $\Delta(T) \ge 4$.	$2\mathrm{m}$
2	35	Define Eulerian graph with example.	$2\mathrm{m}$
2	36	Define hamiltonian. Give an example for a non-hamiltonian graph which	2m
-		contains a hamiltonian path.	2111
2	37	Show that any hamiltonian graph has no cut points.	$2\mathrm{m}$
2	38	Define neighborhood of a point with example.	2m
2	39	Define maximal non-hamiltonian graph with example.	2m
2	40	Define closure of a graph with example.	$2\mathrm{m}$
2	41	If G is a graph with $p \ge 3$ points such that $deg(v) \ge \frac{p}{2}$ for every point	2m
-	**	in G then prove that G is hamiltonian.	

2	42	Define line graph and write the line graph of $K_4 - e$.	$2\mathrm{m}$
2	43	Define subdivision graph with example.	$2\mathrm{m}$
2	44	Is W_5 is a line graph? Justify.	$2\mathrm{m}$
2	45	Is $K_4 - e$ is a line graph? Justify.	2m
2	46	Draw $L(G)$, $L^2(G)$ for W_4 .	$2\mathrm{m}$
3	47	Define factorization of a graph.	$2\mathrm{m}$
3	48	Define planar graph with example.	2m
3	49	Define maximal planar graph with example.	$2\mathrm{m}$
3	50	Give an example for a for a graph G such that both G and \overline{G} are planar.	$2\mathrm{m}$
3	51	Define regular polyhedron with example.	$2\mathrm{m}$
3	52	Define crossing number of a graph with example.	$2\mathrm{m}$
3	53	Find the number of points and lines in complete bipartite graph.	$2\mathrm{m}$
3	54	State Euler's polyhedron formula.	$2\mathrm{m}$
3	55	Define the point covering number of a graph with example.	$2\mathrm{m}$
3	56	Define the line covering number of a graph with example.	$2\mathrm{m}$
3	57	Define the point independence number of a graph with example.	$2\mathrm{m}$
3	58	Define chromatic number of a graph with example.	$2\mathrm{m}$
3	59	Find the chromatic number of complete bipartite and wheel graphs.	2m

3	60	If H is a subgraph of G then prove that $\chi(G) \ge \chi(H)$.	$2\mathrm{m}$
4	61	Define adjacency matrix with example.	2m
4	62	Define incidence matrix with example.	$2\mathrm{m}$
4	63	Define point covering number of a graph with example	$2\mathrm{m}$
4	64	Define cycle matrix with example.	$2\mathrm{m}$
4	65	Mention at least two differences between adjacency matrix and incidence	2m
		matrix.	
4	66	Give an example of dominating set D such that D is common dominating	2m
		set for C_5 and $\overline{C_5}$.	
4	67	Give an example of dominating set D such that D is common dominating	$2\mathrm{m}$
		set for K_5 and $\overline{K_5}$.	
4	68	Give an example for a minimal dominating set need not be minimum.	2m
4	69	Define minimal dominating set with example.	$2\mathrm{m}$
4	70	Define domination number of a graph G with example.	$2\mathrm{m}$
4	71	Find domination number of K_p and $\overline{K_p}$.	$2\mathrm{m}$
4	72	Find domination number of $K_{m,n}$ and $\overline{K_{m,n}}$.	2m
4	73	Find domination number of C_n and P_n .	2m
4	74	Define minimal dominating set with example	$2\mathrm{m}$
1	75	State and prove First theorem of graph theory.	4m

2	76	Prove that $K_{1,3}$ is not a line graph.	4m
2	77	The line graph of a graph G is path if and only if G is path.	4m
2	78	If G is a (p,q) graph then show that $L(G)$ is a (q,q_L) graph where, $q_L = \frac{1}{2} \sum_{i=1}^p d_i^2 - q.$	4m
		If G is hamiltonian graph then prove that for every non empty proper	
2	79	subset S of V(G), $w(G - S) \leq S $, where w(G-S) denotes the number of	4m
		components in any graph G-S.	
2	80	Prove that a graph is Hamiltonian if and only if its closure is Hamiltonian.	4m
3	81	If G is a planar (p,q) graph with r-regions and k-components, then prove	4m
0	01	that $p-q+r=k+1$.	
3	82	If G is a maximal planar (p,q) graph with $p \ge 3$ then prove that q=3p-6.	4m
3	83	If G is a planar (p,q) graph with $p \ge 3$ then prove that $q \le 3p - 6$.	4m
3	84	Prove that every planar graph contain a point of degree at most 5.	4m
3	85	Prove that the graph K_5 and $K_{3,3}$ are non-planar.	4m
3	86	If G is a planar (p,q) graph without triangles and $p \ge 3$ then prove that	4m
-		$q \le 2p - 4.$	
3	87	Prove that at least one face of every polyhedron is bounded by n-cycle	4m
		for some $n=3.4.5$	

3	88	If G is $a(p,q)$ planar graph in which every region is a n-cycle, then prove $n(n-2)$	4m
		that $q = \frac{n(p-2)}{n-2}$.	
3	89	If G is a (p,q) graph then prove that $\chi(G) \ge \frac{p^2}{p^2 - 2q}$.	4m
4	90	Prove that every non trivial connected graph ${\cal G}$ has a dominating set D	4m
		whose component $V - D$ is also a dominating set.	
1	91	Prove that in any graph the number of point of odd degree is even.	$5\mathrm{m}$
1	92	Prove that every non trivial tree has at least two points of degree one.	$5\mathrm{m}$
1	93	Prove that every non-trivial connected graph with p points has at most	5m
1		p-2 cut points	0111
1	94	Prove that every tree has a center consisting of either one point or two	$5\mathrm{m}$
		adjacent points.	
1	95	Prove that every connected graph has a spanning tree.	$5\mathrm{m}$
1	96	Prove that a line x of a connected graph G is a bridge if and only if it is	$5\mathrm{m}$
		not on any cycle of G.	
1	97	Prove that a cubic graph has a cut point if and only if it has a bridge.	$5\mathrm{m}$
		For any graph G prove that $b(G) = c(G) + \sum_{v \in V(G)} [b(v) - 1]$ where, $b(G)$	
1	98	is the number of blocks of G and $c(G)$ is the number of components of	$5\mathrm{m}$
		G.	
1	99	Prove that a graph H is the block graph of some graph if and only if	$5\mathrm{m}$
		every block of H is complete.	

Prove that among all graphs with **p** points and **q** lines, the maximum

1	100	connectivity is zero when $q and is \left\lfloor \frac{2q}{p} \right\rfloor when q \ge p - 1, where$	$5\mathrm{m}$
		$\lfloor x \rfloor$ is the greatest integer less than or equal to x.	
1	101	Prove that if G is a k-connected (p,q) graph then $q \ge \frac{pk}{2}$. Check whether	$5\mathrm{m}$
		there is 5-connected graph with 20 lines.	
2	102	A graph is the line graph of a tree if and only if it is a connected block	$5\mathrm{m}$
		graph in which each cut point is on exactly two blocks.	
3	103	Prove that the complete graph K_{2n} , $n \ge 1$ is 1-factorization. Display a	$5\mathrm{m}$
		1- factorization for K_8 .	
3	104	Prove that the graph K_{2n+1} , $n \ge 1$ is the sum of n- spanning cycles.	$5\mathrm{m}$
		Display 4- hamiltonian cycle for K_9 .	
3	105	Prove that for any graph G, $\chi(G) \leq 1 + \max \delta(G')$ where the maximum	$5\mathrm{m}$
		is taken over all induced subgraphs G' of G.	
3	106	Prove that in a connected graph G there is a Eulerian trail if and only if	$5\mathrm{m}$
		the number of points of odd degree is either zero or two.	
3	107	State and prove Euler's formula of a connected planar graph.	$5\mathrm{m}$
3	108	Prove that the graph K_5 and $K_{3,3}$ are non-planar.	$5\mathrm{m}$
3	109	Let G be a connected graph with 2n points, $n \ge 1$ odd points, then prove	5m
<u> </u>	100	that the set of lines of G can be partitioned into n open trials.	0111
3	110	If every block of a connected graph G is Eulerian, then G is Eulerian.	$5\mathrm{m}$

		Let G be a maximal planar graph of order $p \ge 4$ and let p_i denote the	
3	111	number of points of degree i, for $i = 3, 4,, n = \Delta(G)$ then prove that	$5\mathrm{m}$
		$3p_3 + 2p_4 + p_5 = p_7 + 2p_8 + \dots + (n-6)p_n + 12$	
3	112	For any graph G prove that $\frac{p}{\beta} \leq \chi(G) \leq p - \beta + 1$, where β is the	5m
		independence number of G.	0111
4	113	Demonstrate matrix tree theorem on $K_4 - e$.	$5\mathrm{m}$
4	114	A graph G on p points is connected if and only if $(A + I)^{p-1}$ has no zero	5m
1	111	entries.	0111
		If $A = (a_i j)$ be the adjacency matrix of a graph G then prove that $(i, j)^{th}$	
4	115	entry in $A^n[(A^n)_{ij}]$ is the number of walks of length n from v_i to v_j with	$5\mathrm{m}$
		example.	
4	116	If G has incidence matrix B and cycle matrix C then $CB^T \equiv 0 \pmod{2}$	$5\mathrm{m}$
	110	where, B^T is the transpose of B .	0111
4	117	Find the labelled spanning trees on p points using matrix tree theorem.	$5\mathrm{m}$
Δ	118	Prove that the following graphs are equivalent for any graph G (i) G is	5m
1	110	2-colorable. (ii) G is bipartite.	0111
4	119	If G is a graph of order n then prove that $\left\lfloor \frac{n}{1 + \Delta(G)} \right\rfloor \le \gamma(G) \le n - \beta.$	$5\mathrm{m}$
4	120	If G is a graph having p points and q lines then prove that $p-q \leq \gamma(G) \leq$	$5\mathrm{m}$
		$p-\Delta$.	

If G be a graph without isolated points and D is a minimal dominating 1215mset then show that V - D is a dominating set. If G be any graph then show that $p - q \leq \gamma(G)$, further $\gamma(G) = p - q$ if 1225mand only if each component of G is a star. Prove that there exists a k-coloring of a graph G if and only if V(G) can 123 $5\mathrm{m}$ be partitioned into k subsets $V_1, V_2, ..., Vk$ such that no two points in V_i , $i=1,2,\ldots,k$ are adjacent. Let G be a (p,q) graph then prove that $\delta \leq \frac{2q}{p} \leq \Delta$. Does there exist a 124 6m 3- regular graph with six points? If so construct the graph. Let v be a point of a connected graph G then prove that the following statements are equivalent i) v is a cut point of G. ii) There exist a partition of $V - \{v\}$ into two subsets U and W such that for any point $u \in U$ 1256m and $w \in W$ the point v lies on every u-w path. iii) There exist two points u and w distinct from v such that v is on every u-w path. Let G be a connected graph with at least three points then prove that the following statements are equivalent i) G is a block. ii) Any two points 1266m of G lie on a common cycle. iii) Any point and any line of G lie on a common cycle. iv) Any two lines of G lie on a common cycle.

4

4

4

1

1

1

10

Let G be a connected graph with at least three points then prove that the following statements are equivalent i) Every two lines of G lie on a common cycle. ii) Given two points and one line of G there is a path

127 joining the points which contains the line. iii) For every three distinct 6m point of G there is a path joining any two of them which contains the third. iv) For every three distinct point of G there is a path joining any two of them which doesn't contains the third.

1

1

1

1

 $\mathbf{2}$

2

3

128 For any graph G prove that
$$\kappa(G) \leq \lambda(G) \leq \delta(G)$$
. 6m

- 129 If graph G has p points and $\delta(G) \ge \frac{p}{2}$ then prove that $\lambda(G) = \delta(G)$. 6m Let G be a (p,q) graph then prove that the following statements are
- equivalent i) G is a tree. ii) Every two points of G are joined by unique 6m path. iii) G is connected and p=q+1. iv) G is acyclic and p=q+1.
 Show that the following statements are equivalent i). G is a line graph.
- 131 ii). The line of G can be partitioned into complete subgraphs in such a 6m way that no points lies in more than two of the subgraphs.
 Prove that the following statements are equivalent for a connected graph
- G, (i) G is Eulerian. (ii) Every point of G has even degree. (iii) The set 6m
 of lines of G can be partitioned into cycles.
- For any graph G, the sum and product of χ and $\overline{\chi}$ satisfy the inequalities 133 $2\sqrt{p} \le \chi + \overline{\chi} \le p + 1 \text{ and } p \le \chi \overline{\chi} \le \frac{(p+1)^2}{4}.$ 6m

3	134	If G is a graph with $p \ge 3$ points and $\delta(G) \ge \frac{p}{2}$ then prove that G is	6m
	101	hamiltonian.	0111
		Let G be a graph with p points and let u and v be non-adjacent points	
3	135	in G such that $deg(u) + deg(v) \ge p$. Then prove that G is hamiltonian	$6\mathrm{m}$
		if and only if G+uv is hamiltonian.	
3	136	Prove that there are five regular polyhedron.	$6\mathrm{m}$
Δ	137	For any graph with incidence matrix B , show that $A(L(G)) = B^T B - 2I_q$,	նա
T	107	where B^T is a transpose of B.	0111
		A dominating set D is a minimal dominating set if and only if for each	
4	138	vertex $v \text{ in} D$, one of the following condition holds i) v is an isolated vertex	$6\mathrm{m}$
		of D. ii) there exist a vertex u in $V - D$ such that $N(x) \cap D = \{v\}$.	
4	139	prove that for any (p,q) graph without isolated point $\gamma(G) \leq \alpha(G)$.	6m
-	100	where $\alpha(G)$ is point covering number of G.	0111

St.Philomena's College (Autonomus), Mysore

M. Sc. - Mathematics (CBCS)

Model Question Paper

III- Semester Examination: 2020-21

Subject: Graph Theory

Time: 3 Hours

Max Marks : 70

1

Section - A (MCQ)

- 1. (a) The cycle on n vertices is isomorphic to its compliment. The value of n is
 - i) 5 ii) 4 iii) 6 iv) 3
 - (b) In a connected graph, a bridge is an edge whose removal disconnects a graph. Which one of the following statement is true.
 - i) A tree has no bridges
 - ii) A bridge can not be part of a simple cycle
 - iii) A graph with bridges cannot have a cycle
 - iv) none of the above 1
 - (c) Let G be a connected planar graph with 10 vertices. If the number of edges on each face is 3, then the number of edges in G is

- i) 20 ii) 24
- iii) 16 iv) 26 1

(d) Let A be a adjacency matrix of a simple graph. Which one of the following statement is not related to A.

- i) Every diagonal entries are zero
- ii) Symmetric matrix
- iii) i^{th} row as well as i^{th} column of the matrix is equal to the degree of v_i
- iv) Every column of the matrix contains exactly two 1's 1

Section - B

2.	(a) Show that a $G = (p,q)$ graph is a complete graph if and only if q	=
	$\frac{p(p-1)}{2}.$	2
	(b) Is $K_4 - e$ is a line graph? Justify.	2

(c) Define domination number of a graph G with example. 2

Section - C

Answer any three from the following.	$3 \times 10 = 30$
--------------------------------------	--------------------

3. (a) Prove that in any graph the number of point of odd degree is even. 5

	(b)	Prove that every connected graph has a spanning tree.	5
4.	(a)	Prove that a graph H is the block graph of some graph if and only if every	
		block of H is complete.	5
	(b)	Prove that if G is a k-connected (p,q) graph then $q \ge \frac{pk}{2}$. Check whether	
		there is 5-connected graph with 20 lines.	5
5.	(a)	Prove that $K_{1,3}$ is not a line graph.	4
	(b)	Show that the following statements are equivalent	
		i. G is a line graph.	
		ii. The line of G can be partitioned into complete subgraphs in such a	
		way that no points lies in more than two of the subgraphs.	6
6.	(a)	Prove that the following statements are equivalent for a connected graph	
		G,	
		i. G is Eulerian.	
		ii. Every point of G has even degree.	
		iii. The set of lines of G can be partitioned into cycles.	6
	(b)	If G is hamiltonian graph then prove that for every non empty proper sub-	
		set S of V(G), $w(G-S) \leq S $, where w(G-S) denotes the number of com-	
		ponents in any graph G-S.	4

Section - D

 $3 \times 10 = 30$

Answer any three from the following.

ii. there exist a vertex u in V-D such that $N(x) \cap D = \{v\}$. 6