St.Philomena's College (Autonomus), Mysore PG Department of Mathematics
 Question Bank (Revised Curriculum 2020 onwards)
 Second Year - Third Semester (2020-22 Batch)
 Course Title (Paper Title): Graph Theory Q.P.Code-87332

Unit
S.No

1

2 Draw all graphs with four points.
3 Define multi-graph and pseudograph with example. 2 m

4 What is the maximum number of lines in a graph with p points? Justify.
5 Draw two different $(5,5)$ graph. 2 m

Draw a graph with point representing the numbers $1,2,3, \ldots, 10$ in which
two points are adjacent if and only if they have a common divisor greater 2 m than one.
$7 \quad$ Define degree of a point in a graph. Draw all graphs on $p=3$ points. 2 m
8 Define minimum degree of a graph with example. 2 m

9 Define Maximum degree of a graph with example. 2 m

10 Define regular graph. Draw all regular graph with four points. 2 m

11 Define cubic graph. Draw all cubic graph with eight points. 2 m

Define complete graph with example. 2 m
Define bridge point of a graph with example. 2 m

For any connected graph G prove that $r(G) \leq \operatorname{diam}(G) \leq 2 r(G) . \quad 2 \mathrm{~m}$
Define isomorphism of two graphs. Draw all non-isomorphic graphs with three points.

Define complement and self complement of a graph with example. 2 m
Define cut point of a graph with example. 2 m

Show that a (p, q) graph is a complete graph if and only if $q=\frac{p(p-1)}{2} . \quad 2 \mathrm{~m}$ If v is a cut point of G then show that v is not a cut point of \bar{G}. 2 m Define spanning subgraph of a graph. Draw all spanning subgraph of K_{3}. 2 m Define induced subgraph of a graph. Draw two induced subgraph of $K_{5} . \quad 2 \mathrm{~m}$ Is complement of a complete graph is a subgraph of that graph? Justify. 2 m Define complete bipartite graph. Give an example of a bipartite graph 2 m which is regular.

Define block and end block of a graph with example.
Define distance between two points with example.
Construct a graph with $\kappa(G)=3 \lambda(G)=4$ and $\delta(G)=5$.
Define block index of point in a graph and find the block index of an 2 m isolated point and a cut point.

Define block graph of a graph. Draw block graph of $K_{1,6}$
Draw two different graphs G_{1} and G_{2} such that block graph of G_{1} is isomorphic to block graph of G_{2}.

Define cut point graph of a graph with example.
Define point connectivity of a graph and find the point connectivity of 2 m $K_{m, n}$.

Define line connectivity of a graph find the line connectivity of cycle with 2 m
p number of points.
Define tree. Draw all trees with four points.
Draw all trees with seven points and $\Delta(T) \geq 4$. 2 m

Define Eulerian graph with example.
Define hamiltonian. Give an example for a non-hamiltonian graph which 2 m contains a hamiltonian path.

Show that any hamiltonian graph has no cut points. 2 m
Define neighborhood of a point with example. 2 m
Define maximal non-hamiltonian graph with example. 2 m
Define closure of a graph with example.
If G is a graph with $p \geq 3$ points such that $\operatorname{deg}(v) \geq \frac{p}{2}$ for every point 2 m in G then prove that G is hamiltonian.
Define line graph and write the line graph of $K_{4}-e$. 2 m
Define subdivision graph with example. 2 m
Is W_{5} is a line graph? Justify. 2 m
Is $K_{4}-e$ is a line graph? Justify. 2 m
Draw $L(G), L^{2}(G)$ for W_{4}. 2 m
Define factorization of a graph. 2 m
Define planar graph with example. 2 m
Define maximal planar graph with example. 2 m
Give an example for a for a graph G such that both G and \bar{G} are planar. 2 m
51Define crossing number of a graph with example.2 m
53Define the point covering number of a graph with example.2 mDefine the point independence number of a graph with example.2 m
58 Define chromatic number of a graph with example. 2 m
9 Find the chromatic number of complete bipartite and wheel graphs. 2 m

60 If H is a subgraph of G then prove that $\chi(G) \geq \chi(H)$.
61 Define adjacency matrix with example. 2 m

62 Define incidence matrix with example. 2 m

63 Define point covering number of a graph with example 2 m
64 Define cycle matrix with example.
Mention at least two differences between adjacency matrix and incidence 2 m matrix.

66
Give an example of dominating set D such that D is common dominating set for C_{5} and $\overline{C_{5}}$.

Give an example of dominating set D such that D is common dominating set for K_{5} and $\overline{K_{5}}$.

68 Give an example for a minimal dominating set need not be minimum.
69 Define minimal dominating set with example.
Define domination number of a graph G with example.
71 Find domination number of K_{p} and $\overline{K_{p}}$.
72 Find domination number of $K_{m, n}$ and $\overline{K_{m, n}}$. 2 m

7Define minimal dominating set with example2 m75 State and prove First theorem of graph theory.4 m

Prove that $K_{1,3}$ is not a line graph.
4 m 4 m 4 m $q_{L}=\frac{1}{2} \sum_{i=1}^{p} d_{i}^{2}-q$.

If G is hamiltonian graph then prove that for every non empty proper subset S of $\mathrm{V}(\mathrm{G}), w(G-S) \leq|S|$, where $\mathrm{w}(\mathrm{G}-\mathrm{S})$ denotes the number of components in any graph G-S.

Prove that a graph is Hamiltonian if and only if its closure is Hamiltonian.
4 m
If G is a planar (p, q) graph with r-regions and k -components, then prove that $\mathrm{p}-\mathrm{q}+\mathrm{r}=\mathrm{k}+1$.

If G is a maximal planar (p, q) graph with $p \geq 3$ then prove that $\mathrm{q}=3 \mathrm{p}-6$.
$4 m$ If G is a planar (p, q) graph with $p \geq 3$ then prove that $q \leq 3 p-6$. 4 m Prove that every planar graph contain a point of degree at most $5 . \quad 4 \mathrm{~m}$ Prove that the graph K_{5} and $K_{3,3}$ are non-planar. If G is a planar (p, q) graph without triangles and $p \geq 3$ then prove that $q \leq 2 p-4$.

Prove that at least one face of every polyhedron is bounded by n-cycle for some $\mathrm{n}=3,4,5, \ldots$

If G is $\mathrm{a}(\mathrm{p}, \mathrm{q})$ planar graph in which every region is a n -cycle, then prove that $q=\frac{n(p-2)}{n-2}$.
If G is a (p, q) graph then prove that $\chi(G) \geq \frac{p^{2}}{p^{2}-2 q}$.
4 m
Prove that every non trivial connected graph G has a dominating set D whose component $V-D$ is also a dominating set.

Prove that in any graph the number of point of odd degree is even.
Prove that every non trivial tree has at least two points of degree one.
Prove that every non-trivial connected graph with p points has at most 5 m p-2 cut points

Prove that every tree has a center consisting of either one point or two 5 m adjacent points.

Prove that every connected graph has a spanning tree.
Prove that a line x of a connected graph G is a bridge if and only if it is
5 m not on any cycle of G.

Prove that a cubic graph has a cut point if and only if it has a bridge.
5 m For any graph G prove that $b(G)=c(G)+\sum_{v \in V(G)}[b(v)-1]$ where, $\mathrm{b}(\mathrm{G})$ is the number of blocks of G and $c(G)$ is the number of components of 5 m G.

Prove that a graph H is the block graph of some graph if and only if 5 m every block of H is complete.

Display 4- hamiltonian cycle for K_{9}.

Prove that for any graph $\mathrm{G}, \chi(G) \leq 1+\max \delta\left(G^{\prime}\right)$ where the maximum is taken over all induced subgraphs G^{\prime} of G.

Prove that in a connected graph G there is a Eulerian trail if and only if the number of points of odd degree is either zero or two.

107 State and prove Euler's formula of a connected planar graph.

Let G be a connected graph with 2 n points, $n \geq 1$ odd points, then prove that the set of lines of G can be partitioned into n open trials.

110 If every block of a connected graph G is Eulerian, then G is Eulerian. $\lfloor x\rfloor$ is the greatest integer less than or equal to x .

Prove that if G is a k-connected (p, q) graph then $q \geq \frac{p k}{2}$. Check whether 5 m there is 5 -connected graph with 20 lines.

A graph is the line graph of a tree if and only if it is a connected block graph in which each cut point is on exactly two blocks.

Prove that the complete graph $K_{2 n}, n \geq 1$ is 1 -factorization. Display a 1- factorization for K_{8}.

Prove that the graph $K_{2 n+1}, n \geq 1$ is the sum of n- spanning cycles. 5 m 5 m 5 m m 5 m

Pospar
 5 m 5 m 5 m 5 m 5 m

Let G be a maximal planar graph of order $p \geq 4$ and let p_{i} denote the

For any graph G prove that $\frac{p}{\beta} \leq \chi(G) \leq p-\beta+1$. where β is the independence number of G.

113

114
A graph G on p points is connected if and only if $(A+I)^{p-1}$ has no zero entries.

If $A=\left(a_{i} j\right)$ be the adjacency matrix of a graph G then prove that $(i, j)^{t h}$ example.

If G has incidence matrix B and cycle matrix C then $C B^{T} \equiv 0(\bmod 2)$ where, B^{T} is the transpose of B.

117 Find the labelled spanning trees on p points using matrix tree theorem. 5 m Prove that the following graphs are equivalent for any graph G (i) G is 2-colorable. (ii) G is bipartite.

119 If G is a graph of order n then prove that $\left\lfloor\frac{n}{1+\Delta(G)}\right\rfloor \leq \gamma(G) \leq n-\beta . \quad 5 \mathrm{~m}$ 120 If G is a graph having p points and q lines then prove that $p-q \leq \gamma(G) \leq$ $p-\Delta$.

121 set then show that $V-D$ is a dominating set.

If G be any graph then show that $p-q \leq \gamma(G)$, further $\gamma(G)=p-q$ if 122 and only if each component of G is a star.

Prove that there exists a k-coloring of a graph G if and only if $V(G)$ can and $w \in W$ the point v lies on every u -w path. iii) There exist two points u and w distinct from v such that v is on every $u-w$ path.

Let G be a connected graph with at least three points then prove that the following statements are equivalent i) G is a block. ii) Any two points 126 be partitioned into k subsets $V_{1}, V_{2}, \ldots, V k$ such that no two points in V_{i}, $\mathrm{i}=1,2, \ldots, \mathrm{k}$ are adjacent.
Let G be a (p, q) graph then prove that $\delta \leq \frac{2 q}{p} \leq \Delta$. Does there exist a 3- regular graph with six points? If so construct the graph.

Let v be a point of a connected graph G then prove that the following statements are equivalent i) v is a cut point of G. ii) There exist a partition of $V-\{v\}$ into two subsets U and W such that for any point $u \in U$
-

If G be a graph without isolated points and D is a minimal dominating 5 m 5 m 6 m 6 m of G lie on a common cycle. iii) Any point and any line of G lie on a common cycle. iv) Any two lines of G lie on a common cycle.

Let G be a connected graph with at least three points then prove that the following statements are equivalent i) Every two lines of G lie on a common cycle. ii) Given two points and one line of G there is a path

127 point of G there is a path joining any two of them which contains the third. iv) For every three distinct point of G there is a path joining any two of them which doesn't contains the third.

If graph G has p points and $\delta(G) \geq \frac{p}{2}$ then prove that $\lambda(G)=\delta(G)$. Let G be a (p, q) graph then prove that the following statements are 130 equivalent i) G is a tree. ii) Every two points of G are joined by unique path. iii) G is connected and $\mathrm{p}=\mathrm{q}+1$. iv) G is acyclic and $\mathrm{p}=\mathrm{q}+1$. Show that the following statements are equivalent i). G is a line graph. ii). The line of G can be partitioned into complete subgraphs in such a way that no points lies in more than two of the subgraphs.

Prove that the following statements are equivalent for a connected graph
G, (i) G is Eulerian. (ii) Every point of G has even degree. (iii) The set of lines of G can be partitioned into cycles.

For any graph G , the sum and product of χ and $\bar{\chi}$ satisfy the inequalities 133 $2 \sqrt{p} \leq \chi+\bar{\chi} \leq p+1$ and $p \leq \chi \bar{\chi} \leq \frac{(p+1)^{2}}{4}$.

134
If G is a graph with $p \geq 3$ points and $\delta(G) \geq \frac{p}{2}$ then prove that G is hamiltonian.

Let G be a graph with p points and let u and v be non-adjacent points
135 in G such that $\operatorname{deg}(u)+\operatorname{deg}(v) \geq p$. Then prove that G is hamiltonian if and only if G+uv is hamiltonian.

For any graph with incidence matrix B, show that $A(L(G))=B^{T} B-2 I_{q}$, where B^{T} is a transpose of B.

A dominating set D is a minimal dominating set if and only if for each vertex v in D, one of the following condition holds i) v is an isolated vertex 6 m of D. ii)there exist a vertex u in $V-D$ such that $N(x) \cap D=\{v\}$. prove that for any (p, q) graph without isolated point $\gamma(G) \leq \alpha(G)$. 6 m where $\alpha(G)$ is point covering number of G.

St.Philomena's College (Autonomus), Mysore
 M. Sc. - Mathematics (CBCS) Model Question Paper
 III- Semester Examination: 2020-21
 Subject: Graph Theory

Time: 3 Hours
Max Marks : 70

Section - A (MCQ)

1. (a) The cycle on n vertices is isomorphic to its compliment. The value of n is
i) 5
ii) 4
iii) 6
iv) 3

1
(b) In a connected graph, a bridge is an edge whose removal disconnects a graph. Which one of the following statement is true.
i) A tree has no bridges
ii) A bridge can not be part of a simple cycle
iii) A graph with bridges cannot have a cycle
iv) none of the above
(c) Let G be a connected planar graph with 10 vertices. If the number of edges on each face is 3 , then the number of edges in G is
i) 20
ii) 24
iii) 16
iv) 26
1
(d) Let A be a adjacency matrix of a simple graph. Which one of the following statement is not related to A .
i) Every diagonal entries are zero
ii) Symmetric matrix
iii) $i^{\text {th }}$ row as well as $i^{\text {th }}$ column of the matrix is equal to the degree of v_{i}
iv) Every column of the matrix contains exactly two 1's

Section - B

2. (a) Show that a $G=(p, q)$ graph is a complete graph if and only if $q=$ $\frac{p(p-1)}{2}$.
(b) Is $K_{4}-e$ is a line graph? Justify.
(c) Define domination number of a graph G with example.

Section - C

Answer any three from the following.
3. (a) Prove that in any graph the number of point of odd degree is even.
(b) Prove that every connected graph has a spanning tree.
4. (a) Prove that a graph H is the block graph of some graph if and only if every block of H is complete.
(b) Prove that if G is a k-connected (p, q) graph then $q \geq \frac{p k}{2}$. Check whether there is 5 -connected graph with 20 lines.
5. (a) Prove that $K_{1,3}$ is not a line graph.
(b) Show that the following statements are equivalent
i. G is a line graph.
ii. The line of G can be partitioned into complete subgraphs in such a way that no points lies in more than two of the subgraphs.
6. (a) Prove that the following statements are equivalent for a connected graph G,
i. G is Eulerian.
ii. Every point of G has even degree.
iii. The set of lines of G can be partitioned into cycles.
(b) If G is hamiltonian graph then prove that for every non empty proper subset S of $\mathrm{V}(\mathrm{G}), w(G-S) \leq|S|$, where $\mathrm{w}(\mathrm{G}-\mathrm{S})$ denotes the number of components in any graph G-S.

Section - D

7. (a) Prove that the graph K_{5} and $K_{3,3}$ are non-planar.
(b) For any graph G, the sum and product of χ and $\bar{\chi}$ satisfy the inequalities $2 \sqrt{p} \leq \chi+\bar{\chi} \leq p+1$ and $p \leq \chi \bar{\chi} \leq \frac{(p+1)^{2}}{4}$.
8. (a) If G is a (p, q) graph then prove that $\chi(G) \geq \frac{p^{2}}{p^{2}-2 q}$.
(b) Prove that there are five regular polyhedron.
9. (a) Prove that every non trivial connected graph G has a dominating set D whose component $V-D$ is also a dominating set.
(b) For any graph with incidence matrix B, show that $A(L(G))=B^{T} B-2 I_{q}$, where B^{T} is a transpose of B .
10. (a) Demonstrate matrix tree theorem on $K_{4}-e$.
(b) A dominating set D is a minimal dominating set if and only if for each vertex v in D, one of the following condition holds
i. v is an isolated vertex of D.
ii. there exist a vertex u in $V-D$ such that $N(x) \cap D=\{v\}$.
