St. Philomena's College (Autonomous), Mysore

Question Bank
Programme: M. Sc. Physics

III Semester

Course Title: Riemannian Geometry and Gravitational Field

 Course Type: Soft Core Q.P Code : 88335| $\begin{gathered} \text { Sl. } \\ \text { No. } \end{gathered}$ | $\begin{gathered} \text { Modu } \\ \text { le } \end{gathered}$ | Question | Marks |
| :---: | :---: | :---: | :---: |
| 1. | 1 | Show that the covariant differentiation of the contravariant metric tensor g^{jk} with respect to x^{1} is zero. | 5 |
| 2. | 1 | Show that the covariant differentiation of the covariant metric tensor g_{jk} with respect to x^{1} is zero. | 5 |
| 3. | 1 | Prove that $\mathrm{g}_{\mathrm{j}, 1}{ }^{\mathrm{k}}=0$ | 5 |
| 4. | 1 | Show that the covariant differentiation for products, sumand differences obeys the same rule in the case of ordinary differentiation. | 5 |
| 5. | 1 | Discuss the antisymmetric and cyclic properties of Riemann christoffel tensor properties | 5 |
| 6. | 1 | Prove that $[\mathrm{ik}, \mathrm{j}]+[\mathrm{jk}, \mathrm{i}]=\mathrm{dg}_{\mathrm{ij}} / \mathrm{dx}$. | 5 |
| 7. | 1 | Prove that $[\mathrm{ij}, \mathrm{m}]=\operatorname{gkm}\left\{\begin{array}{l}\mathrm{k} \\ \mathrm{i} \\ \mathrm{j}\end{array}\right\}$. | 5 |
| 8. | 1 | Define a metric tensor with an example, | 5 |
| 9. | 1 | Show that $\mathrm{R}_{\text {puvo }}+\mathrm{R}_{\mu \text { pvo }}=0$ | 5 |
| 10. | 1 | Prove that $\mathrm{R}_{\text {puvo }}+\mathrm{R}_{\text {¢vou }}+\mathrm{R}_{\text {¢оиv }}=0$. | 5 |
| 11. | 1 | Prove that $\Gamma_{\mathrm{m}, \mathrm{jk}}-\Gamma_{\mathrm{m}, \mathrm{kj}}=0$. | 5 |
| 12. | 1 | Justify that the number of algebraically independent components of curvature tensor in 4 d space it is 20 . | 5 |
| 13. | 2 | Write a brief note on the nature of singularities at $r=0$ and $r=2 G M / c^{2}$ of the Schwarzchild line element. | 5 |

14.	2	Write a note on the relativistic units.	5
15.	2	Discuss the relationship between the attracting mass M and the constant m occuring in Schwarzchild line element.	5
16.	2	Give the expression for Schwarzchild's line element and hence obtain the Schwarzchild's metric	5
17.	2	Calculate the determinant of Schwarzchild mertic.	5
18.	2	Calculate the perihelion shift of the Earth per century given $\mathrm{T}=1$ earth year.	5
19.	2	Calculate the perihelion shift of the Mercury per century given $\mathrm{T}=0.24$ earth years.	5
20.	2	Calculate the perihelion shift of the Mercury per century given $\mathrm{T}=0.62$ earth years.	5
21.	2	Calculate the Schwarzchild radius of the earth given that the mass of the Earth is $6 \times 10{ }^{24} \mathrm{~kg}$.	5
22.	2	Calculate the Schwarzchild radius of the earth given that the mass of the Sun is $2 \times 10^{30} \mathrm{~kg}$.	5
23.	2	Calculate the Schwarzchild radius of the earth given that the mass of the Mercury is $3.3 \times 10{ }^{23} \mathrm{~kg}$.	5
24.	2	Explain black hole as a region of strong gravitational field.	5
25.	2	List and explain the types of black holes.	5
26.	2	Write a short note on gravitational collapse.	5
27.	1	Discuss the covariant differentiation of a contravariant vector and show that it is a tensor.	10
28.	1	Discuss the covariant differentiation of a covariant vector and show that it is a tensor.	10
29.	1	Discuss the covariant differentiation of a mixed tensor of rank two and show that it is a tensor.	10

30.	1	Arrive at an expression for parallel transport of a contravariant vector A^{μ} along the curve $\mathrm{x}^{\mathrm{i}}(\mathrm{s})$. in Riemannian space.	10
31.	1	state and prove the necessary and sufficient conditions that a system of coordinates be geodesic with an arbitrary pole.	10
32.	1	Obtain the differential equations of a geodesic in a given space.	10
33.	1	Define Riemann Christoffel curvature tensor and and obtain an expression for it.	10
34.	1	Deduce an expression for covariant curvature tensor and discuss its properties.	10
35.	1	Arrive at an expression for the variation of the metric in general relativity.	10
36.	1	Enumerate the number of independent non-zero components of $\mathrm{R}_{\text {คuvo }}$ in a Riemannian space V_{n}.	10
37.	1	Prove the Bianchi identity satisfied by $\mathrm{R}_{\text {puvo }}$. Contracting the Bianchi identity, Show that the vector divergence of Einstein tensor vanishes identically.	10
38.	1	Show that the curvature tensor may be contracted in two ways which leads to zero tensor and Richi tensor and hence define scalar curvature.	10
39.	1	Define Christoffel symbols of first and second kind. Calculate the Christoffel symbol of first kind corresponding to $d S^{2}=\mathrm{dr}^{2}+\mathrm{r}^{2} \mathrm{~d} \theta^{2}+\mathrm{r}^{2} \sin ^{2} \theta \mathrm{~d} \phi^{2}$.	10
40.	1	Calculate the Christoffel symbol of first and second kind corresponding to $\mathrm{dS}^{2}=\mathrm{dr}^{2}+\mathrm{r}^{2} \mathrm{~d} \theta^{2}+\mathrm{r}^{2} \sin ^{2} \theta \mathrm{~d} \phi^{2}$.	10
41.	2	Write a note on the equivalene principle. Discuss the Eotvos experiment in support of the equivalence principle	10
42.	2	Derive an expression for the stress energy tensor for a perfect fluid distribution.	10
43.	2	Deduce the Einstein's field equations in general theory of relativity.	10
44.	2	Obtain the Schwarzchild's exterior solution for the gravitational field of an isolated particle.	10

		Write a note on the equivalene principle. Discuss the Eotvos experiment in support of the equivalence principle	10
46.	2	Discuss the perihelion shift of mercury as a test of general relativity.	10
47.	2	Discuss the bending of light in gravitational field due to a static spherically symmetric mass distribution	10
48.	2	Explain in detail the isotropic polar coordinates and hence obtain an expression for Schwarzchild's isotropic line element	10
49.	2	Obtain an expression for the bendding of light passing close to a heavy gravitational mass.	10
50.	2	Show that the deflection of light rays as calculated on the assumption of Einstein's theory of gravitation is double that might have been predicted in Newtonian theory.	10
51.	2	obtain the formula for the gravitational red shift in general relativity.	10

For 2 credit soft core courses

St. Philomena's College(Autonomous), Mysuru				
I/II/III/IV Semester M.Sc. Examination Month - Year				
Subject:				
Title:				
Time: 3 hours			Max. Marks:70	
Instruction: Answer any four full question from Section - A and any of the five questions from Section - B.				
Section - A				
1.	Question to b	it I		05
2.	Question to b	it I		05
3.	Question to b	it I		05
4.	Question to b	it II		05
5.	Question to b	it II		05
6.	Question to b	it II		05
Section-B				
7.	Question to b	it I		10
8.	Question to b	it I		10
9.	Question to b	it I		10
10.	Question to b	it II		10
11.	Question to b	it II		10
12.	Question to b	it II		10

Note: Marks of Section A and B can be any combinations of 5 and 10 respectively. For example in section - A we may have (3+2). In section-B we may have ($6+4$) and ($5+5$).

