St. Philomena's College (Autonomous), Mysore

Question Bank
Programme: M. Sc. Physics
III Semester
Course Title: Rotation and Lie Groups in Physics
Course Type: Soft Core
Q.P Code : 88336

Sl.No.	Module	Questions	Marks
1.	1	Define a group with examples.	5
2.	1	Show that the identity element and inverse of a group are unique.	5
3.	1	Define a groupoid and semigroup with examples.	5
4.	1	Prove that set of all complex square matrices form a group under multiplication.	5
5.	1	show that $\mathrm{H}=\{ \pm 1\}$ is a subgroup of $\mathrm{G}=\{ \pm 1, \pm \mathrm{i}\}$.	5
6.	1	show that set of all square matrices with determinant -1 does not form a subgroup of $\mathrm{O}(\mathrm{n}, \mathrm{C})$.	5
7.	1	Show that z is the centre of group G if $\mathrm{g} \subset \mathrm{G}$ and $\mathrm{zg}=\mathrm{gz}$.	5
8.	1	Evaluate eA θ if $\mathrm{A}^{2}=\mathrm{E}$ and θ is a complex number.	5
9.	1	Evaluate eA θ if $\mathrm{A}^{3}=-\mathrm{E}$ and θ is a complex number.	5
10.	1	Show that $\mathrm{BAB}^{-1}=\exp \left(\mathrm{BAB}^{-1}\right)$.	5
11.	1	If A and B are commuting matrices, prove that $\mathrm{e}^{A} \cdot e^{B}=e^{(A+B)}$.	5
12.	1	Prove that the eigenvalues of a rotation matrix are e^{0} and $\mathrm{e}^{ \pm i \theta \text { e }}$	5
13.	1	Find the rotation matrix corresponding to a rotation through an angle of $\pi \mathrm{rad}$ about vector $\frac{1}{\sqrt{3}}(1,1,1)$.	5
14.	1	Discuss the commutation relations of generatrs of $\mathrm{SO}(3)$.	5

15.	1	What are equivalent and inequivalent representations of a group? Explan.	5
16.	1	Discuss the canonical form of a matrix representative.	5
17.	1	Explain in detail the direct sum of matrices.	5
18.	2	If G is a Lie group and G_{0} the connected component of unity. Then justify that G_{0} is a normal subgroup of G and is a Lie group itself. The quotient group G / G_{0} is discrete.	5
19.	2	Define the structure constants and give their properties.	5
20.	2	List the matrix exponential properties of arbitrary nxn matrices.	5
21.	2	Define ideals and proper ideals and hence explain simple and semisimple lie algebras.	5
22.	2	Evaluate $\left[\sigma_{\mathrm{x}}, \sigma_{\mathrm{y}}\right]+\left[\sigma_{\mathrm{y}}, \sigma_{\mathrm{z}}\right]\left[\sigma_{\mathrm{z}}, \sigma_{\mathrm{x}}\right]$.	5
23.	2	Show that the lie algebra of $\mathrm{SO}(3)$ is semisimple and its killing form is negative definite.	5
24.	1	Outline the classification of continuous matrix groups with an example for each category.	10
25.	1	Explain the properties of different types of orthogonal groups.	10
26.	1	Obtain the rotation matrix interms of axis and angle.	10
27.	1	Obtain the matrix representative of $R(n, \theta)$ in the basis $\{i, j, k\}$ of R^{3}.	10
28.	1	Discuss in detail the properties of rotation matrix.	10
29.	1	Prove that the matrix series converges for a finite n .	10
30.	1	Obtain the Euler resolution of rotation matrix in terms of the angles α, β, γ.	10
31.	1	Calculate the generators of $\mathrm{SO}(3)$ and discuss their properties.	10
32.	1	Explain the homomorphism of a group with example and show that the kernal of is a subgroup.	10

33.	1	Define the representation of an abstract group and hence explain faithful, unfaithful and Character of representation.	10
34.	1	Distinguish between reducible and irreducible representations of a group. Show that the 2dimensional representations of Pauli's spin matrices are irreducable.	10
35.	1	State and explain the Schur's lemma. Obtain the orthogonality relations for irreducible representations.	10
36.	1	Construct the D1/2 representations of $\mathrm{SO}(3)$ by exponentiation.	10
37.	1	Obtain the representations of D1/2 matrices for arbitrary angles.	10
38.	2	Define a Lie group and explain its topological properties with examples	10
39.	2	Explain the algebraic and topological properties of a lie group.	10
40.	2	Define the generators of a lie group.	10
41.	2	Define and explain the properties of a lie algebra.	10
42.	2	Explain a killing form. Show that a lie algrbra is semisimple if the determinant of the killing form is non-zero.	10
43.	2	Explain in detail how the Dynkin diagram of a semi-simple Lie algebra is constructed.	10
44.	2	Give the generators for the Lie group SU (2) and discuss their Lie algebra.	10
45.	2	State and prove the Baker-Campbell-Hausdorff formula for non comuting operators.	10

For 2 credit soft core courses

St. Philomena's College(Autonomous), Mysuru				
I/II/III/IV Semester M.Sc. Examination Month - Year				
Subject:				
Title:				
Time: 3 hours			Max. Marks:70	
Instruction: Answer any four full question from Section - A and any of the five questions from Section - B.				
Section - A				
1.	Question to b	it I		05
2.	Question to b	it I		05
3.	Question to b	it I		05
4.	Question to b	it II		05
5.	Question to b	it II		05
6.	Question to b	it II		05
Section-B				
7.	Question to b	it I		10
8.	Question to b	it I		10
9.	Question to b	it I		10
10.	Question to b	it II		10
11.	Question to b	it II		10
12.	Question to b	it II		10

Note: Marks of Section A and B can be any combinations of 5 and 10 respectively. For example in section - A we may have (3+2). In section-B we may have ($6+4$) and ($5+5$).

