Plasmids

Microbiology VI

Plasmids

- The term plasmid was first introduced by the American molecular biologist Joshua Lederberg in 1952 to refer to "any extra-chromosomal hereditary determinant.".
- Like other organisms, bacteria use double-stranded DNA as their genetic material.
- However, bacteria organize their DNA differently than more complex organisms.
- In addition to the chromosome, bacteria often contain plasmids that are extra

 chromosomal hereditary material.

PLASMIDS

Properties of plasmids:

- Plasmids: are <u>small double-stranded DNA</u> molecules, usually <u>circular</u> that can exist <u>independently</u> of host chromosomes and are present in many bacteria
- They are also present in some yeasts and other fungi.

 They have their own replication origins and are autonomously replicating and stably inherited.

- Plasmids can be integrated into the chromosomal DNA.
- Episomes: are plasmids that are integrated into the chromosomal DNA.

- Plasmids are considered as replicons.
- Replicon is a DNA molecule or sequence that has a replication origin and is capable of being replicated.
- Plasmids and bacterial chromosomes are separate replicons.
- Plasmids have relatively few genes, generally less than 30.
- Their genetic information is not essential to the host, and bacteria that lack them usually function normally.

Classification of Plasmids

Plasmids may be classified in a number of ways.

- Types of plasmids based on function:
 - Fertility Plasmids
 - Resistance Plasmids
 - Col Plasmids
 - Degradative plasmids
 - Virulence plasmids
- 1. Fertility Plasmids (F plasmid): Carry the fertility genes (tra-genes) for conjugation, the transfer of genetic information between two cells.
- 2. Resistance Plasmids (R plasmid): Contain genes that can build resistance to antibiotics or poisons.

3. Col Plasmids: Contain genes that encode for the antibacterial polypeptides called **bacteriocins**, a protein that kills other strains of bacteria.

Ex. The col proteins of *E. coli*.

4. Degradative plasmids: which enable the digestion of unusual substances. Ex. toluene and salicylic acid.

5. Virulence plasmids: which turn the bacterium into a pathogen.

Ex. Ti plasmid in Agrobacterium tumefaciens

Types of plasmids by their ability to transfer to other bacteria:

- Conjugative plasmids
- Non-conjugative plasmids

1. Conjugative plasmids:

Contain <u>transfer genes</u> necessary for non-sexual transfer of genetic material, which perform the complex process of <u>conjugation</u>, the transfer of plasmids to another bacterium.

Ex. **F** and **F' plasmids**.

2. Non-conjugative plasmids:

These plasmids are incapable of initiating conjugation hence they can only be transferred with the assistance of conjugative plasmids.

3. Intermediate classes of plasmids:

- Are also called <u>mobilizable plasmids</u>, and carry only a <u>subset of the genes</u> required for transfer.
- They can parasitize a conjugative plasmid, transferring at high frequency only in its presence.
- Plasmids are now being used to manipulate DNA and may possibly be a tool for curing many diseases.

- Plasmids can also be classified based on <u>copy number</u>:
 - Stringent plasmid
 - Relaxed plasmid

Stringent plasmid:

- It replicates only along with the main bacterial chromosome.
- It is present as a single copy, or at most several copies per cell.

Relaxed plasmid:

- It replicates within a cell independently of the chromosomal DNA replication.
- Thus multiple copies of plasmids are present

Plasmids can also be classified into **incompatibility** groups:

- Compatible type
- Incompatible type
- Compatible type: A microbe can harbour different types of plasmids, but different plasmids can only exist in a single bacterial cell if they are compatible.
- If two plasmids are not compatible, one or the other will be rapidly lost from the cell.
- Different plasmids may therefore be assigned to different incompatibility groups depending on whether they can coexist together.
- Incompatible plasmids normally share the same replication or partition mechanisms and can thus not be kept together in a single cell.

Application of plasmids as vectors

- Artificially constructed plasmids may be used as vectors in genetic engineering.
- These plasmids serve as important tools in genetics and biotechnology labs, where they are commonly used to clone and amplify (make many copies of) or express particular genes.
- A wide variety of plasmids are commercially available for such uses.
- The gene to be replicated is normally inserted into a plasmid that typically contains a number of features for their use.
- These include a gene that confers resistance to particular antibiotics (ampicillin is most frequently used for bacterial strains), an origin of replication to allow the bacterial cells to replicate the plasmid DNA, and a suitable site for cloning.

Artificially constructed plasmid – used as vectors in genetic engineering

Applications of plasmids

1. Medical uses:

Plasmid contains some genes advantages to the bacterial host by genetic engineering.

☐ Plasmids can code for antibiotics:

Some bacteria become immune to antibiotics because they have plasmids that make them immune. They can also give their plasmids to other bacteria through transformation.

Ex. Plasmids for Antibiotic Resistance:

- Kanamyicin resistance
- Chloramphenicol resistance
- B-galactosidase resistance
- Gentamycin resistance

Production of antibiotics:
Ampicillin
Tetracycline
Kanamycine
Bleomycin
Hygromycin B
Chloramphenicol
Degradation of complex organic compounds.
Production of insulin
Production of colchicines.

2. Agricultural uses:

- Herbicide resistant plants
- Pesticide resistant plants
- Virus resistant plants
- Stress resistant plants
- Improvement of crops quality
- 3. Transgenic animals.
- 4. Production of industrial & GMO foods.
- 5. DNA technology in bioconservation.
- 6. Recombinant DNA technology.
- 7. Cloning vectors.

Application of Plasmids

