
ADDRESSING MODES

The different ways of specifying the location of an
operand in an instruction are called as addressing

modes.

Types of Addressing Modes

Implied Addressing Mode

• The definition of the instruction itself specify the operands implicitly.

• It is also called as implicit addressing mode.

• The instruction “Complement Accumulator” is an implied mode instruction.

• In a stack organized computer, Zero Address Instructions are implied mode

instructions.

• (since operands are always implied to be present on the top of the stack)

Stack Addressing Mode

• In this addressing mode,

• The operand is contained at the top of the stack.

• Example-

• ADD

• This instruction simply pops out two symbols contained at the top of the

stack.

• The addition of those two operands is performed.

• The result so obtained after addition is pushed again at the top of the stack.

Immediate Addressing Mode-

In this addressing mode,

•The operand is specified in the instruction explicitly.

•Instead of address field, an operand field is present that contains the operand.

• Examples

• ADD 10 will increment the value stored in the accumulator by 10.

• MOV R #20 initializes register R to a constant value 20.

Direct Addressing Mode

• The address field of the instruction contains the effective address of the operand.

• Only one reference to memory is required to fetch the operand.

• It is also called as absolute addressing mode.

Example-

• ADD X will increment the value stored in the accumulator

by the value stored at memory location X.

AC ← AC + [X]

Indirect Addressing Mode

• The address field of the instruction specifies the address of memory location that contains the

effective address of the operand.

• Two references to memory are required to fetch the operand.

• Example

• ADD X will increment the value stored in the accumulator by the value stored at memory location

specified by X.

• AC ← AC + [[X]]

Register Direct Addressing Mode

• In this addressing mode,

• The operand is contained in a register set.

• The address field of the instruction refers to a CPU register that contains the operand.

• No reference to memory is required to fetch the operand.

• Example-

• ADD R will increment the value stored in the accumulator by

the content of register R. AC ← AC + [R]

• This addressing mode is similar to direct addressing mode.

• The only difference is address field of the instruction refers to a CPU register instead of main
memory.

Register Indirect Addressing Mode

• The address field of the instruction refers to a CPU register that contains the effective address of the

operand.

• Only one reference to memory is required to fetch the operand.

• ADD R will increment the value stored in the accumulator by the content of memory location

specified in register R. AC ← AC + [[R]]

• This addressing mode is similar to indirect addressing mode.

• The only difference is address field of the instruction refers to a CPU register.

Relative Addressing Mode

• Effective address of the operand is obtained by adding the content of program counter with the address part

of the instruction.

• Effective Address = Content of Program Counter + Address part of the instruction

• Program counter (PC) always contains the address of the next instruction to be executed.

• After fetching the address of the instruction, the value of program counter immediately increases.

• The value increases irrespective of whether the fetched instruction has completely executed or not.

Indexed Addressing Mode

• Effective address of the operand is obtained by adding the content of index register

with the address part of the instruction. Effective Address = Content of Index

Register + Address part of the instruction

Base Register Addressing Mode

• Effective address of the operand is obtained by adding the content of base register with the address

part of the instruction. Effective Address = Content of Base Register + Address part of the

instruction

Auto-Increment Addressing Mode

• This addressing mode is a special case of Register Indirect
Addressing Mode where-

• Effective Address of the Operand= Content of Register

• In this addressing mode,

• After accessing the operand, the content of the register is
automatically incremented by step size ‘d’.

• Step size ‘d’ depends on the size of operand accessed.

• Only one reference to memory is required to fetch the operand.

Assume operand size = 2 bytes.

Here,

After fetching the operand 6B, the instruction register RAUTO will be automatically incremented by 2.

Then, updated value of RAUTO will be 3300 + 2 = 3302.

At memory address 3302, the next operand will be found.

In auto-increment addressing mode,

First, the operand value is fetched.

Then, the instruction register RAUTO value is incremented by step size ‘d’.

Auto-Decrement Addressing Mode

• This addressing mode is again a special case of Register Indirect Addressing

Mode where-

• Effective Address of the Operand = Content of Register – Step Size

• In this addressing mode,

• First, the content of the register is decremented by step size ‘d’.

• Step size ‘d’ depends on the size of operand accessed.

• After decrementing, the operand is read.

• Only one reference to memory is required to fetch the operand.

Assume operand size = 2 bytes.

Here,

First, the instruction register RAUTO will be decremented by 2.

Then, updated value of RAUTO will be 3302 – 2 = 3300.

At memory address 3300, the operand will be found.

In auto-decrement addressing mode,

First, the instruction register RAUTO value is decremented by step size ‘d’.

Then, the operand value is fetched.

Applications of Addressing Modes

Applications of Addressing Modes

Instruction Formats

• The instruction format also defines the layout of the bits for an
instruction. It can be of variable lengths with multiple numbers of
addresses. These address fields in the instruction format vary as per the
organization of the registers in the CPU. Depending on the multiple
address fields, the instruction is categorized as follows:

• Three address instruction

• Two address instruction

• One address instruction

• Zero address instruction

Zero Address Instruction

• This instruction does not have an operand field, and the location of operands
is implicitly represented. The stack-organized computer system supports
these instructions. To evaluate the arithmetic expression, it is required to
convert it into reverse polish notation.

• Example: Consider the below operations, which shows how X = (A + B) ∗
(C + D) expression will be written for a stack-organized computer.

One Address Instruction
• This instruction uses an implied accumulator for data manipulation operations. An accumulator is a

register used by the CPU to perform logical operations. In one address instruction, the accumulator
is implied, and hence, it does not require an explicit reference. For multiplication and division,
there is a need for a second register. However, here we will neglect the second register and assume
that the accumulator contains the result of all the operations.

• Example: The program to evaluate X = (A + B) ∗ (C + D) is as follows:

• All operations are done between the accumulator(AC) register and a memory
operand.

• M[] is any memory location.

• M[T] addresses a temporary memory location for storing the intermediate
result.

• This instruction format has only one operand field. This address field uses
two special instructions to perform data transfer, namely:

• LOAD: This is used to transfer the data to the accumulator.

• STORE: This is used to move the data from the accumulator to the memory.

Two Address Instructions

• This instruction is most commonly used in commercial computers. This
address instruction format has three operand fields. The two address fields
can either be memory addresses or registers.

• Example: The program to evaluate X = (A + B) ∗ (C + D) is as follows:

• The MOV instruction transfers the operands to the memory from the
processor registers. R1, R2 registers.

Three Address Instruction

• The format of a three address instruction requires three operand fields. These three fields can
be either memory addresses or registers.

• Example:The program in assembly language X = (A + B) ∗ (C + D) Consider the
instructions given below that explain each instruction's register transfer operation.

• Two processor registers, R1 and R2.

• The symbol M [A] denotes the operand at memory address symbolized by A. The operand1
and operand2 contain the data or address that the CPU will operate. Operand 3 contains the
result’s address.

References

• https://www.gatevidyalay.com/addressing-modes/

• https://www.codingninjas.com/codestudio/library/instruction-formats

https://www.gatevidyalay.com/addressing-modes/
https://www.codingninjas.com/codestudio/library/instruction-formats

