
History of Java

Java is a programming language and a platform.

Java is a simple, portable, platform independent, high performance,
multithreaded , high level, robust, class based, concurrent, general
purpose, object-oriented and secure programming language.

Java was developed by Sun Microsystems (which is now the
subsidiary of Oracle) in the year 1995.

James Gosling is known as the father of Java. Before Java, its
name was Oak.

Since Oak was already a registered company, so James Gosling and

his team changed the name from Oak to Java.

Types of Java Applications

There are mainly 4 types of applications that can be created using Java programming:

1) Standalone Application

2) Web Application

3) Enterprise Application

4) Mobile Application

Java Platforms / Editions

There are 4 platforms or editions of Java:

1) Java SE (Java Standard Edition)

2) Java EE (Java Enterprise Edition)

3) Java ME (Java Micro Edition)

4) JavaFX

Features of Java

JVM

 JVM (Java Virtual Machine) is an abstract

machine.

The JVM performs the following main tasks:
o Loads code

o Verifies code

o Executes code

o Provides runtime environment

JRE

 JRE is an acronym for Java Runtime Environment.

 It is also written as Java RTE.

 The Java Runtime Environment is a set of software tools
which are used for developing Java applications.

 It is used to provide the runtime environment.

 It is the implementation of JVM. It physically exists.

 It contains a set of libraries and other files that JVM uses
at runtime.

What happens at compile time?

JDK

 JDK is an acronym for Java Development Kit.

 The Java Development Kit (JDK) is a software development environment which is used to develop Java

applications and applets.

 It physically exists.

 It contains JRE + development tools.

 JDK is an implementation of any one of the below given Java Platforms released by Oracle Corporation:

o Standard Edition Java Platform

o Enterprise Edition Java Platform

o Micro Edition Java Platform

https://www.javatpoint.com/java-applet

JVM Architecture

Java Variables

Types of Variables

There are three types of variables in Java.
o local variable

o instance variable

o static variable

https://www.javatpoint.com/java-tutorial

Local Variable

A variable declared inside the body of the

method is called local variable. This

variable only within that method and the

other methods in the class aren't even aware

that the variable exists. A local variable

cannot be defined with "static" keyword.

Instance Variable

A variable declared inside the class but

outside the body of the method, is called an

instance variable. It is not declared as static.

It is called an instance variable because its

value is instance-specific and is not shared

among instances.

https://www.javatpoint.com/static-keyword-in-java

Static variable

A variable that is declared as static is called
a static variable. It cannot be local and it
can be created a single copy of the static
variable and share it among all the
instances of the class. Memory allocation
for static variables happens only once when
the class is loaded in the memory.

Data Types in Java

 Data types specify the different sizes and values that can be stored in the variable. There

are two types of data types in Java:

1. Primitive data types: The primitive data types include boolean, char,

byte, short, int, long, float and double.

2. Non-primitive data types: The non-primitive data types include Classes, Interfaces
and Arrays.

https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/interface-in-java
https://www.javatpoint.com/array-in-java

Data Types in Java

Java Primitive Data Types

 In Java language, primitive data types are the building blocks of data

manipulation. These are the most basic data types available in Java

language. Java is a statically-typed programming language. It means,

all variables must be declared before its use. That is why we need to

declare variable's type and name.

https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/java-variables

Operators in Java

 Operator in Java is a symbol that is used to perform operations.

There are many types of operators in Java which are given below:

o Unary Operator, Arithmetic Operator,

o Shift Operator, Relational Operator,

o Bitwise Operator, Logical Operator,

o Ternary Operator and Assignment Operator.

https://www.javatpoint.com/java-tutorial

Java Operator Precedence

Operator Type Category Precedence

Unary Postfix expr++ expr--

Prefix ++expr --expr +expr -expr ~ !

Arithmetic Multiplicative * / %

Additive + -

Shift Shift << >> >>>

Relational Comparison < > <= >= instanceof

Equality == !=

Bitwise bitwise AND &

bitwise exclusive OR ^

bitwise inclusive OR |

Logical logical AND &&

logical OR ||

Ternary Ternary ? :

Assignment Assignment = += -= *= /= %= &= ^= |= <<= >>= >>>=

Java Keywords

 Java keywords are also known as reserved words.

Keywords are particular words that act as a key to a

code. These are predefined words by Java so they

cannot be used as a variable or object name or class

name.

List of Java Keywords

 abstract, boolean,break, byte, case, catch, char, class,

 continue, default, do, double,if, else,enum,extends,

 final, finally, float, for, implements, import,

 instanceof, int, interface, long, native, new, null,

 package, private, protected,

https://www.javatpoint.com/abstract-keyword-in-java
https://www.javatpoint.com/boolean-keyword-in-java
https://www.javatpoint.com/java-break
https://www.javatpoint.com/byte-keyword-in-java
https://www.javatpoint.com/case-keyword-in-java
https://www.javatpoint.com/try-catch-block
https://www.javatpoint.com/char-keyword-in-java
https://www.javatpoint.com/double-keyword-in-java
https://www.javatpoint.com/interface-in-java

Java Control Statements in Java
Decision Making statements

o if statements

o switch statement

Looping statements

o Do-while loop

o while loop

o for loop

o for-each loop

o Jump statements

o break statement

o continue statement

Java If-else Statement

 The Java if statement is used to test the condition. It checks boolean

condition: true or false. There are various types of if statement in Java.

o if statement

o if-else statement

o if-else-if ladder

o nested if statement

https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/boolean-keyword-in-java

Java Switch Statement

 The Java switch statement executes one statement from multiple

conditions.

 It is like if-else-if ladder statement. T

 he switch statement works with byte, short, int, long, enum types,

String and some wrapper types like Byte, Short, Int, and Long.

Since Java 7, you can use strings in the switch statement.

 In other words, the switch statement tests the equality of a

variable against multiple values.

https://www.javatpoint.com/java-if-else
https://www.javatpoint.com/java-string

For loop

The Java for loop is used to iterate a part of the program several times. If the number

of iteration is fixed, it is recommended to use for loop. There are three types of for

loops in Java.

o Simple for Loop

o For-each or Enhanced for Loop

o Labeled for Loop

https://www.javatpoint.com/for-each-loop

Java Simple for Loop

A simple for loop is the same as C/C++. We can initialize

the variable, check condition and increment/decrement

value.

Syntax:
for(initialization; condition; increment/decrement)
{
//statement or code to be executed

}

https://www.javatpoint.com/c-programming-language-tutorial
https://www.javatpoint.com/cpp-tutorial
https://www.javatpoint.com/java-variables

Java Nested for Loop

If we have a for loop inside the another

loop, it is known as nested for loop. The

inner loop executes completely whenever

outer loop executes.

Java for-each Loop

The for-each loop is used to traverse array or
collection in Java. It is easier to use than simple for
loop because we don't need to increment value and use
subscript notation. It works on the basis of elements
and not the index. It returns element one by one in the
defined variable. Syntax:
for(data_type variable : array_name)
{
//code to be executed

}

Java Labeled For Loop

We can have a name of each Java for loop. To do so, we use label

before the for loop. It is useful while using the nested for loop as we

can break/continue specific for loop.

Syntax:

labelname: for(initialization; condition; increment/decrement)

{

//code to be executed

}

Java for Loop vs while Loop vs do-while Loop

Comparison for loop while loop do-while loop

Introduction The Java for loop is a control flow statement that

iteratesa part of the programs

multiple times.

The Java while loop is a control flow statement that

executes a part of the programs repeatedly on the

basis of given boolean condition.

The Java do while loop is a control flow statement

that executes a part of the programs at least once

and the further execution depends upon the given

boolean condition.

Whento use If the number of iteration is fixed, it is

recommended to use for loop.

If the number of iteration is not fixed, it is

recommended to usewhile loop.

If the number of iteration is not fixed and you must

have to execute the loop at least once, it is

recommended to use the do-while loop.

Syntax for(init;condition;incr/decr){

// code to be executed

}

while(condition){

//code to be executed

}

do{

//code to be executed

}while(condition);

Example //for loop

for(int i=1;i<=10;i++){

System.out.println(i);

}

//while loop

int i=1;

while(i<=10){

System.out.println(i);

i++;

}

//do-while loop

int i=1;

do{

System.out.println(i);

i++;

}while(i<=10);

Syntax for infinitive loop for(;;){

//code to be executed

}

while(true){

//code to be executed

}

do{

//code to be executed

}while(true);

https://www.javatpoint.com/java-programs

Java While Loop

The Java while loop is used to iterate a part of the program repeatedly until
the specified Boolean condition is true. As soon as the Boolean condition
becomes false, the loop automatically stops. The while loop is considered
as a repeating if statement. If the number of iteration is not fixed, it is
recommended to use the while loop.

Syntax:

while (condition)

{

//code to be executed

Increment / decrement statement

}

https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/programs-list
https://www.javatpoint.com/java-for-loop

Java do-while Loop

The Java do-while loop is used to iterate a part of the program repeatedly, until the

specified condition is true. If the number of iteration is not fixed and you must have

to execute the loop at least once, it is recommended to use a do-while loop. Java do-

while loop is called an exit control loop. Therefore, unlike while loop and for loop,

the do-while check the condition at the end of loop body. The Java do-while loop is

executed at least once because condition is checked after loop body.

Syntax:

Do

{

//code to be executed / loop body

//update statement

}while (condition);

Java Continue Statement

The continue statement is used in loop control structure when you need to
jump to the next iteration of the loop immediately. It can be used with for
loop or while loop. The Java continue statement is used to continue the
loop. It continues the current flow of the program and skips the remaining
code at the specified condition. In case of an inner loop, it continues the
inner loop only. We can use Java continue statement in all types of loops
such as for loop, while loop and do-while loop.

Syntax:

jump-statement;

continue;

Java Comments

The Java comments are the statements in a program that are not

executed by the compiler and interpreter.

Types of Java Comments

Single Line Comment

Multi Line Comment

Documentation Comment

https://www.javatpoint.com/java-tutorial

Why do we use comments in a code?

o Comments are used to make the program more readable by

adding the details of the code.

o It makes easy to maintain the code and to find the errors

easily.

o The comments can be used to provide information or

explanation about the variable, method, class, or any statement.

o It can also be used to prevent the execution of program code

while testing the alternative code.

https://www.javatpoint.com/java-variables
https://www.javatpoint.com/object-and-class-in-java

Java Single Line Comment

The single-line comment is used to comment
only one line of the code. It is the widely used
and easiest way of commenting the statements.
Single line comments starts with two forward
slashes (//). Any text in front of // is not
executed by Java.

Syntax:
 //This is single line comment

Java Multi Line Comment

The multi-line comment is used to comment multiple lines of code. It can be used to

explain a complex code snippet or to comment multiple lines of code at a time (as it

will be difficult to use single-line comments there). Multi-line comments are placed

between /* and */. Any text between /* and */ is not executed by Java.

Syntax:

/*

This

is

multi line

comment

*/

Java Documentation Comment

Documentation comments are usually used to write large programs for a
project or software application as it helps to create documentation API.
These APIs are needed for reference, i.e., which classes, methods,
arguments, etc., are used in the code. To create documentation API, we
need to use the javadoc tool. The documentation comments are placed
between /** and */.

Syntax:

/**

**We can use various tags to depict the parameter

*or heading or author name

*We can also use HTML tags

*

*/

https://www.javatpoint.com/creating-api-document

